320 likes | 466 Views
NESSiE. Towards the Technical Proposal, to be submitted to SPS-C. Luca Stanco, on behalf of NESSiE Collaboration February, 15, 2012. Middle January: 1rst meeting/Organization End of January : Intermediate Work-Out Meeting (many meetings hold on)
E N D
NESSiE Towards the Technical Proposal, to be submitted to SPS-C Luca Stanco, on behalf of NESSiE Collaboration February, 15, 2012 Middle January: 1rst meeting/Organization End of January: Intermediate Work-Out Meeting (many meetings hold on) Middle February: End of Work/Start of TP drafting End of February: Intermediate Drafting Meeting Middle of March: TP document ready
Content • Mechanics • Detectors/Electronics/DAQ • Prototypes • - Working Areas/ Sharing of responsabilities • - Next Steps
GOAL/Problematiche Sviluppare un DESIGN STUDY per un Rivelatore a 2 Moduli - economico - quasi nessun R&D - veloce nei tempi di costruzione - totalmente compatibile con la proposta ICARUS (LAr) - autosufficiente - massimizzare l’output di Fisica Gli Spectrometri sono essenziali per: - Identificazione della carica - controllo degli errori sistematici - chiara separazione di neutrini e anti-neutrini
Issues considered/decided-upon in the last month • 0) PIT definition and acknowledgement • Allow 100 cm for Magnet in Air and related detectors • Choose RPC with analog Read-Out for latter case • Assembling of Iron structure displaced of 500 cm from • final position • 4) Assembling of Air Magnet+Detectors in separate HALL • 5) Construct a full prototype (MagnetS + Detectors + Electronics) • similar to NEAR transverse view (1/2 height) with 5+5 iron slabs
The general layout for the FAR site experimental hall is given in Fig. M1. The LAr detector is shown in yellow. The neutrino beam is entering the experimental hall for the LAr direction. Downstream, the air magnet part of the NESSIE spectrometer is shown in pink. The air magnet allows to track muons emerging with low momentum from the LAr volume. Further downstream, the iron magnet is shown in red. This second part is designed to track higher momentum muons. For safety reasons the LAr and the spectrometer volumes are separated by a containment wall shown in blue in Fig. M1. Fig. M1 shows also 2 of the 4 cranes needed for detector assembly and the expected location of the LAr cryo. plant and of the spectrometer gas system.
FAR Hall Fig. M2: preliminary details about the occupancy of the FAR experimental hall.
NEAR Hall Fig. M4: preliminary details about the occupancy of the NEAR experimental hall.
Checked it is viable for NESSiE Iron Magnet high-pressure air pads (30 bars) “A slope of 1.23% has been constructed, mimicking the slope of the LEP/LHC tunnel at point 5.”
Iron Magnet NEAR FAR
Other details: kind of material, chemical composition and mechanical characteristics Material: S 235 JRG2 EN10025+A1(table)
Campo magnetico nel ferro e in aria (sezione yz ; metà superiore) potenziale vettore (Wb/m) CM (T) y (m) IronTop coil z z (m) Distanza bobina – Iron Spectro : 40 cm x AIR CM: 0.2 T (30 cm) Bobina sezione rettangolare : 54 mm x 19 mm 170 (2 strati) avvolgimenti lungo y, densità corrente 4 A/mm2 Resistenza totale : 0.1 Ohm Voltage : 700 V, Potenza 4.9 MW. y z
Simulation shows that the Magnetic Fields are perfectly contained B (T) z (m)
PROTOTYPE 3 major issues to clarify: 1) interplay between magnetic fields and electronics of the detectors 2) interplay between Air and Iron magnetic fields (simulation ok but check compatibility with LAr instrumentation) 3) verify viability of mechanical structure (assembling and in-situ displacement) and cooling (Air magnet consumption about 5 MW) To be build in Lecce (see next slide)
NESSIE: TENTATIVO ORGANIZZAZIONE CAPITOLI MECCANICA SPETTROMETRI NEAR & FAR 1) MAGNETE IN ARIA (Coils – raffreddamento – strutture – etc.) BOLOGNA 2) PROTOTIPO LECCE 3.7) INTEGRAZIONE – COORDINAMENTO INSTALLAZIONE 3) SPETTROMETRI (NEAR & FAR) 3.1) TOP – BOTTOM – LAMIERE – STRUTTURE SUPP. (Progettazione – gare d’appalto – supervisione realizzazione – coordinamento installazione) FRASCATI 3.2) BOBINE – RAFFREDDAMENTO BOBINE (Progettazione – gare d’appalto – supervisione realizzazione) BOLOGNA 3.3) STRUTTURA ASSEMBLAGGIO SPETTROMETRI (Progettazione – gare d’appalto – supervisione alla realizzazione) PADOVA 3.4) TOOLS MONTAGGIO (Progettazione – supervisione alla realizzazione) LECCE 3.5) RIVELATORI “RPC” ? 3.6) RIVELATORI “HPT” ? 4) INTEGRAZIONE GENERALE “ NESSIE” – COORDINAMENTO “NESSIE – CERN” PADOVA
One page summary sugli RPC digitali di OPERA • regime di lavoro standard: • miscela: Ar (75.4 %), R124A (freon, 20 %), ISOB (4.0 %), SF6 (0.6 %), 5refills/day • tensione di lavoro: 5700 V @ 900 mB corretti per le variazioni pressione • soglie sui discriminatori: • - 40 mV per le strip verticali (31 Ohm) • + 26 mV per le strip orizzontali (24 Ohm) • discriminatore sopra soglia, segnale di FAST_OR (16 strips adiacenti), controller board legge la FEB e time-stampa il segnale di FAST_OR , controller board inoltra i dati al «run manager» (software trigger) • condizione di trigger «di alto livello» del «run manager» per gli RPC: coincidenza di 3 piani / controller board su 22 usando un intervallo temporale di 200 ns, acquisizione dell’evento • monitoring delle efficienze ogni 12 ore usando i raggi cosmici • il trigger con la coincidenza di 3 piani su 22 consente di acquisire cosmici senza eccessivo dead time, cosmici utili se non indispensabili per verificare il corretto funzionamento del rivelatore in assenza di fascio • efficienza *accettanza misurata integrando sui 2 spettrometri (44 piani): »90 %
WHICH detector for the Air Magnet ? On top of resolution (≲ 1 mm) … ⇒ACCEPTANCE is critical !
RPC with analog read-out seems the best solution in term of resolution/costs X Y 3 strips contain 85% of the total charge induced on the cathode (X) and 91% of the total charge induced on the anode (Y)
RPC with analog Read-Out for the Air Magnet: assembling Two options: 1) large area (8x5 m2) sandwiched with honeycomb layers (à la OPERA) PRO: homogeneity (expecially for dE/dx) CONS: never tried 2) fully equipped alluminium-framed chambers PRO: positive past experience (e.g. CMS) CONS: inhomogeneity
Stima preliminare costi complessivi NESSiE-PS (in K€) (stima errore 20% su singolo valore) 2012: NESSiE, 80 K per R&D 2013: 2,500 (Apparati) + 200 (Consumi) + 150 (Missioni) = 2,850 2014: 4,300 (Apparati) + 350 (Consumi) + 300 (Missioni) = 4,950 2015: 1,500 (Apparati) + 250 (Consumi) + 350 (Missioni) = 2,100 2016: 0 (Apparati) + 300 (Consumi) + 250 (Missioni) = 550 =================================================== TOT: 8,300 (Apparati) + 1,100 (Consumi) + 1,050 (Missioni) = 10,450 Legenda “Apparati”: nel 2013 (Magnete-FAR), nel 2014 (rivelatori+Mag.NEAR), nel 2015 (DAQ) (vedi tab. 11 del Proposal SPSC-P-343) Recupero “OPERA” su “Apparati” (70% valore originale): nel 2013: 1,500 (Ferro), nel 2014: 1000 (Ferro) + 1,850 (rpc+strips) = 4,350 Risultato: 6,100 – 10,450
Tempistica Futura MARZO 2012: preparazione di un Report TECNICO congiunto NESSiE+LAr GIUGNO 2012: approvazione dell’esperimento da parte del CERN SETTEMBRE 2012: richieste alla Commissione II per il 2013 GENNAIO 2013: Inizio gare e inizio produzione (NEAR 6 mesi dopo) SETTEMBRE 2013: Inizio assemblaggio FAR (= T0, vedi dopo) SETTEMBRE 2014: Inizio assemblaggio NEAR GIUGNO 2015: Fine istallazione
Sharing per Technical Proposal • Meccanica: LNF, BO, PD, LE • Rivelatori: PD, LNF… • Elettronica: BA, LE, PD • DAQ: PD, BO DEFINIRE un TEMPO ZERO ! e.g. T0 = starting of 1rst Installation Item at CERN (Sep.2013 for SS) TDT= Ready to take data: November 2015 for the Spectrometers
Prossime Riunioni Mechanics: 22 Febbraio (Genova) 13 March (Bologna) RPC/Elettronics/DAQ: next week Draft Tech.Prop. Work out the different items in 1 and 2 week time • Mechanics: General Structure • Iron Magnet • Air Magnet • Detectors: RPC in Iron Magnet • RPC in Air Magnet • Electronics (Iron and Air) • 3) Prototypes: Magnets+Detectors+Electronics
➱ DUE Spectrometri “à la OPERA”, ottimizzati per le accettanze (recupero di contingenze: 300+300 rivelatori RPC 3 m2 possibile recupero di FERRO/Elettronica proprietà dell’ INFN) FAR 750 cm NEAR 500 cm 600 cm 500 cm 900 cm 1800 + 700 m2 RPC 20,000+12,000 digital channels Precision Trackers
Need to beat Multiple Scattering and Detector Resolution aver a large E range: ➯ dE/dx measure ➯ long lever-arm (add iron slabs) Need to go to the lowest possible muon momentum (≈ 500 MeV) with best sensitive charge Id at low energy ➯ add coils for B in air
As a summary SPECTROMETERS complementing the LAr capabilities in measuring the muon momentum would provide valuable information in: – measuring νμ disappearance in the full momentum range, which is a key ingredient for rejecting existing anomalies at exceeding s’s. or measuring the whole parameter space of sterile neutrino oscillations, i.e. prove sterile neutrino existence; – measuring the neutrino flux at the close detector in the full muon momentum range, relevant to keep the systematic errors at the lowest possible values. ALSO the measurement of the muon charge would provide valuable information in: – separating nμ from anti-nμ in the anti-neutrino beam (where the nμ contamination is large). A critical issue is to fully exploit the experimental capability of observing any difference between νμ → νe and anti-νμ → anti-νe (CP violation signature).
21+21 Fe • 5 cm slabs • 3 cm RPC Dario Orecchini
MAGNETE in FERRO MAGNETE in ARIA
gas R. Arnaldi et al. “Spatial Resolution of RPC in streamer mode”, Nucl. Instr. & Meth. A 490 (2002) 51 HV Cosmic ray test with ADC read-out and thin strips (2 mm) The center-of-gravity method with analog readout is well justified by the charge profile: - Gaussian shape with a width of ~ 5 mm - gas mixture and HV do not change these features - total charge depends strongly on gas mixture and HV