1 / 22

Superconducting RF (SRF) Systems

Superconducting RF (SRF) Systems. Peter McIntosh (STFC) Accelerator-driven Production of Medical Isotopes 8 th – 9 th December 2011. Outline. Medical Isotope Generation The Photo-Fission Process Accelerators and Isotope Production Superconducting RF Technology

makani
Download Presentation

Superconducting RF (SRF) Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Superconducting RF (SRF) Systems Peter McIntosh (STFC) Accelerator-driven Production of Medical Isotopes 8th – 9th December 2011

  2. Outline • Medical Isotope Generation • The Photo-Fission Process • Accelerators and Isotope Production • Superconducting RF Technology • SRF Accelerator Solutions for 99Mo Production • Conclusions

  3. Medical Isotopes • Positron Emission Tomography (PET) scans, produce detailed maps of active areas in the brain and other organs. Technetium-99m has become the workhorse of diagnostic nuclear medicine: • with over 50,000 procedures performed each day in the U.S. • Radioisotopes have become a vital tool for scientific research and industry: • applications in medicine, biology, physics, chemistry, agriculture, national security and environmental and materials science. • The ability to attach radionuclide to a pharmaceutical agent for transport to the desired site is key to its effectiveness for medical applications.

  4. 99mTc Production • The half-life of an isotope must be long enough to allow transport from production sites to end-use locations without excessive loss, and short enough to minimize the unwanted radiation dose to the patient after the procedure is complete. • The use of “generators,” involves a longer-lived parent (2.75-day 99Mo) that decays to a shorter-lived daughter (6-hour 99mTc). • Specialized reactors produce the 99Mo as a fission fragment for transport to end-use sites, where clinicians “milk” the 99mTc daughter from the generator as needed.

  5. 99Mo Production (a) Neutron fission of 235U (present-day reactor technique). (b) Neutron-capture process on 98Mo. (c) Photo-neutron process on 100Mo. (d) Photo-fission of 238U.

  6. Photo-Fission Process Neutron Fission fragments High energy photon Neutron Fission fragments Neutron Photo-fission of 238U was proposed by W. T. Diamond (Chalk River) in 1999 as an alternative production method for RIB.

  7. HEU Reactors and Accelerators • Specific isotopes from accelerator induced nuclear reactions, using appropriate beam species and energies: • Typically 10 – 100s MeV protons • Major advances in high-power particle accelerators and high-power target technologies offer significant advantages for isotope production via spallation-induced neutron irradiation. • Isotope sources are produced using either reactors or accelerators of varying sizes. • 99Mo is a fission fragment that is today typically produced using Highly Enriched Uranium (HEU) reactors.

  8. SRF Accelerators • Superconducting RF (SRF) accelerator technology is capable of 20x beam power required, which using rapid-switching techniques could distribute beam simultaneously to many target stations. • Electron beam accelerator technologies show promise for radionuclide production, either via photo-nuclear reactions with MW-class beams, or using Compton backscatter of high-intensity laser beams with high-quality light source beams. • A high-power accelerator facility could provide a reliable source of neutron produced isotopes such as 99Mo, and also have sufficient power and flexibility to supply a steady stream of research isotopes.

  9. Superconductivity Benefits • Both Normal-conducting RF (NRF) and SRF accelerating structures can produce high gradients (10s of MeV/m), but only SRF technology can sustain high duty operation. • The power dissipated for CW operation in a NRF structure is potentially enormous, but not so for SRF cavities. • RF power required to generate an accelerating voltage (Vacc) is defined by: • The ratio of shunt resistance to quality factor (R/Q), which depends on cavity geometry, is not vastly different between NRF and SRF cases; and so the cavity power (Pc) required is dominated by the bare quality factor Q₀, which is typically 105 times larger for SRF. • Overall, SRF reduces the wall plug power compared to NRF, by a factor ~200, reducing power consumption from MWs to kWs.

  10. Neutron Amplifier Target for Isotope Production ina SRF Based Accelerator Facility at ANL • The SRF linac uses energy recovery linac (ERL) technology, whereby the electron beam is transmitted through the target and is recollected and re-injected into the accelerating structure. • The recollected beam transfers beam power to the injected electron beam, and reduces the amount of RF power required to accelerate the electrons to their final energy. • ~10 x less RF power compared to non-ERL linac technology. • The SRF linac is only ~ 2 meters long making it compact in comparison to existing NC technology. The energy recovery efficiency is >95%. The depleted beam power is dumped into a low energy beam stop, which is physically separate from the target. Courtesy J Nolan, ANL

  11. Accelerator Flexibility • The beam energy, target thickness, and recovered power can be optimized for maximum isotope yield. • The target has a vacuum loadlock, which can be removed from the target chamber and a new target installed without breaking vacuum or stopping the linac operation. • The activated target requires robotic control, but this is a well established technology. • System has a number of advantages over conventional linac technology: • more compact, • higher current for increased yields, • improved thermal management of waste beam power, • a continuous target feed, • and multiple target capability. • The linac can also be configured for other isotope production, e.g. 67Cu, which requires similar energies to 99Mo.

  12. ARIEL E-Linac at TRIUMF • Advanced Rare IsotopE Laboratory as part of the ISAC facility at TRIUMF. • New complementary electron linac (E-linac) driver for photo-fission. • New proton beamline. • New target stations and front end. • Staged installation proposed.

  13. ARIEL E-Linac Parameters } The requirement: 50 MeV × 10 mA = 0.5 MW beam power } Not critical; beam dumped on target

  14. ARIEL E-Linac Layout Injector 10 MV/m, Q=1010 10 mA, 5-10 MeV gain ≤100 kW beam power Main Linac Two cryomodules Two cavities/module, 10 MV/m, Q=1010 10 mA, 40 MeV gain ≤400 kW beam power Gun 100 keV, 650 MHz • Division into injector & main linacs allows: • Possible expansion for: • Energy Recovery Linac (ERL) – e.g. 10 mA, 80 MeV • Recirculating Linear Accelerator (RLA) – e.g. 2 mA, 160 MeV Buncher Solenoids Capture Cavities Solenoid 9-cell Cavities

  15. MW Class SRF Linac The present E-linac design concept, based on 1.3 GHz Superconducting RF technology (SRF) in CW operation, offersflexibility, possibility for expansion to other applications (Free Electron Laser, Energy Recovery Linac).

  16. Staged Implementation

  17. E-Linac High Power RF Delivery

  18. ARIEL Injector Cryomodule Cryo-insert with 4K phase separator. 2K JT valve & HX not shown. Insulating vacuum 77K thermal shield Input coupler Strong back Warm/cold transition Cavity string

  19. Main LinacCryomodule Cold Mass Scissor Tuner Input Couplers Integrated Cryomodule

  20. HOM Mitigation • Use SS rings or other damping material to damp dipole to 1e7 Ω. • Back-up solution – use HOM couplers. • RF generator drives fundamental mode, E-beam drives all modes, leaves wakefield, leading to beam break up (BBU) instability. Analysis defines the criteria of (Rd/Q)⋅QL < 107 ohm. • Modelling 9-cell cavity found TE111 trapped dipole mode at 2.56 GHz with Rd = 3e7Ω. • Asymmetric end cells & beam pipes push the mode towards the tuner end.

  21. E-Linac Implementation ERL Upgrade HPRF RLA Upgrade Cryoplant SRF Cryomodules Gun & LEBT

  22. Conclusions • High power accelerators are a viable alternative to conventional HEU reactors. • SRF linac technology provides significant power advantages compared to conventional linac technology: • Order of magnitude higher if ERL techniques are employed • Significant capital and operational cost savings • SRF accelerators also provide wide flexibility in terms of beam power, allowing optimisation for a variety of isotope species and effective yield. • SRF linac solutions for 99Mo production are now becoming a reality using proven accelerator technology. • Funding agency priority is now being demonstrated!

More Related