150 likes | 234 Views
A GEOMETRIA MODELLEZÉSE. Dr. Horváth László. Polinomok.
E N D
A GEOMETRIA MODELLEZÉSE Dr. Horváth László
A lokális tulajdonságot a görbe mentén pontról - pontra változó érintő (t), főnormális (n) és binormális (b) határozzák meg. Az ezek egységvektoraiból képezett derékszögű koordináta-rendszer a kisérő triéder. A kisérő triéder t és n vektorai a simulósíkot, b és t vektorai pedig a normálsíkot határozzák meg. További lokális tulajdonság a görbület, amely az egyenestől való eltérés definiálására szolgál. A görbe lokális tulajdonságai
A görbe létrehozásának feladata alapvető követelményként • megadott szabályszerűség követését, • valamely pontokon való áthaladást, vagy • valamely pontok harmonikus alakot eredményező közelítést tűzhetjük ki. Ennek megfelelően • analitikus, • interpolációs és • közelítő (approximációs) görbék hozhatók létre.
A görbe leírható egyetlen görbeként vagy összekapcsolható görbeszegmensekből. Bezier görbe: egybefüggő, bár éppen ennek hátrányainak kiküszöbölésére alkalmazzák Bezier görbék láncolatát egy adott görbe leírásánál. B-szplájn görbe: szegmensekből épül fel. Egy darabban vagy részekből
Kísérleti úton vagy számítással előállított pontokon átmenő görbe előállítása. Lineáris interpoláció: két-két pontot egyenes szakaszokkal kötnek össze Három ponton körív vezethető át Négy ponton átvezetve harmadfokú görbét kapunk A pontokra illesztés legismertebb módszere Lagrange nevéhez fűződik, Lagrange interpolációként ismert. Francia matematikus Az interpolációs feladat matematikai megoldásához interpolációs polinomok. Ezek közül a Lagrange polinom a legegyszerűbb. A Hermite interpoláció görbe fektetését jelenti két pont közé, a két pont és a két pontnál megvalósítandó érintő alapján. A Hermite féle módszert alkalmazta Ferguson és Coons Interpolációs módszerek
Bezier görbék A görbék pontokból és érintővektorokból kiinduló meghatározása a gyakorlati alkalmazás számára nehézkes. Paul Bezier: vezérlő sokszöget vezette be, amelynek csúcspontjainak helyzete a görbe alakját vezérli (irányítja). Vele egyidőben, ugyanilyen módszerrel valósított meg görbetervezést de Casteljau. A Bezier alapvető jellemzői: a globális vezérlés, a görbének a vezérlőpontok számával összefüggő fokszáma, a görbének az első és utólsó vezérlőponton való áthaladása, a vezérlő sokszög első és utólsó szegmensére való érintőlegessége.
A Bezier görbe fontos tulajdonsága, kogy a vezérlő sokszög által lefedett úgynevezett konvex burkon belül helyezkedik el, amely az ábrán a vonalkázott területnek felel meg. Konvex burok
A B-szplájn görbék jellemzõi Lokális vezérlés, az alapfüggvény fokszámával összefüggõ, a vezérlõpontok számától független fokszámo és szplájn alapföggvények. A B-szplájn görbe nem megy át az elsõ és az utólsó vezérlõponton, azonban megfelelõ módosulata átvezethetõ ezeken a pontokon. A B-szpájn görbe szegmensekbõl áll. Folytonosság a szegmensek határán, amely az alapfüggvények fokszámától függ. A folytonosság követelménye befolyásolja a fokszám megválasztását. A szegmensek határán másodrendû (C2) folytonosságot köbös B-szplájn függvények biztosítanak.
A B-szpájn alapfüggvényt meghatározott paraméter-intervallumon belül definiálják. Az alapfüggvény a B-szplájn görbe paramétertartományának csak egy részén vezéreli a görbét. Egy vezérlõpontot elmozdításának hatására a görbe csak ennek a környezetében, néhány szegmensre kiterjedõen módosul. SZEGMENTÁLTSÁG