830 likes | 1.29k Views
Geometria feladatok megoldásokkal. Tuzson Zoltán, Székelyudvarhely. 1. feladat : Egy 2m×6m-es biliárdasztalon a hosszabbik oldal közepétől, a vízszintessel 45°-os szögben ellövünk egy golyót, amely tökéletesen rugalmasan ütközik a falakkal. Hol következik be a 8. illetve a 60. ütközés?.
E N D
Geometria feladatok megoldásokkal Tuzson Zoltán, Székelyudvarhely
1. feladat: Egy 2m×6m-es biliárdasztalon a hosszabbik oldal közepétől, a vízszintessel 45°-os szögben ellövünk egy golyót, amely tökéletesen rugalmasan ütközik a falakkal. Hol következik be a 8. illetve a 60. ütközés?
A biliárdgolyó pattanásai 8-asával ismétlődnek. A 8. ütközés az A pontban történik, a 60. ütközés a 60=7×8+4 alapján az E pontban történik. H E B 7 4 1 G 6 2 C 0 5 3 D F A
2. feladat: Az „A” ház lakójának minden reggel a folyóból vizet kell vinnie a „B” házba. Hogyan tehette meg eközben a legrövidebb utat.
Legyen B’ a B szimmetrikusa a folyópartra nézve. Ha AB’ a folyópartot M-ben metszi, MB’=MB miatt AM+MB a keresett legrövidebb út.
3. feladat:Négy testvér örökölt egy telket, négy kerekes kúttal. Úgy szeretnék egyenlő alakú és egyenlő nagyságú darabokra felosztani, hogy mindegyiküknek legyen 1-1 kútja. Hogyan végezték el a felosztást, ha a telek alaprajza az ábrán látható?
Egy tengelyesen szimmetrikus felosztást kell elérnünk. Egy ilyen felosztás az ábrán látható.
4. feladat: Egy négyzet alakú halastó egyik sarkánál egy ház, másik 3 sarkánál 1-1 szomorúfűz található. Hogyan lehetne a tó felszínét kétszeresére növelni anélkül, hogy a fákat kivágnák, vagy a házat lebontanák?
Ha a négyzet csúcsain át, az átlókkal párhuzamosokat húzunk, a keletkezett négyzet területe 2-szerese lesz az adott négyzet területének.
5. feladat: Egy kocka alakú süteményt teljesen bevontak csokival. Ezután 27 egyforma kiskockára vágták. Hány kiskocka keletkezik amelyiknek 0, 1, 2, 3 oldala van bevonva csokival?
A négy sarokban 3-3 oldal, az él-közepeken 2-2 oldal, az oldal-közepeken 1-1 oldal, és a legbelső középső kockán 0 oldal van csokival bevonva. 3 2 1
6. feladat: Egy 3 cm élű kocka mindenik lapját egybevágó kis négyzetekre osztottuk. Mindegyik lapon kiválasztjuk a középső kis négyzetlapot és erre merőlegesen a szemközti lapig egy négyzetes oszlopot kifúrunk a kockából. Mennyi lesz az így kapott lyukas test térfogata és felszíne?
A térfogat: 27-(6×1+1)=20 köb cm A teljes felszín: 6×9-6+6×4=72 négyzet cm
7. feladat:Az ABCD négyzetet papírból vágtuk ki. Jelölje E az AB oldal felezőpontját. Az EC egyenes mentén behajtjuk a papírlapot. Hányad része a négyzet területének a feltűrt rész?
Ha a négyzet oldala „a”, akkor a négyzet területe a×a és a visszatűrt háromszög területe ½×a×a, vagyis a négyzet területének a fele.
8. feladat: Az első ábrán látható derékszögű trapéz kisalapja 2, magassága is 2, és nagyalapja 4 egység. A második ábrán látható szimmetrikus trapéz kisalapja és szárai is 2 egység, nagyalapja 4 egység. Darabold fel mindkét trapézt pontosan 4-4 egyenlő területű és egyforma (kongruens) részre!
A nagyalap negyedelő pontjaiban húzzunk szaggatottan függőleges, a szárak (magasság) felezőpontjaiban pedig vízszintes vonalakat. Az így keletkezett rácsvonalakon a megvastagított vonalak éppen 4-4 egymással kongruens (az eredetihez hasonló) alakzatok.
9. feladat: Mekkora a görbe vonalú síkidom területe, ha a rácsnégyzet 1 egység?
A hiányzó és a többlet körszeletek egyformák, így a terület éppen egy téglalap területe, ami 8×4=32
10. feladat: A mellékelt ábrán három azonos hosszúságú és azonos szélességű papírcsík látható, ugyanabból a papírból kivágva. Melyik csík kivágásához használtunk a legtöbb, illetve a legkevesebb papírt?
A csalóka látszat ellenére, mindhárom papírcsíkhoz ugyanannyi papírt használtunk, vagyis a területük egyenlő . Ezt az alábbi átdarabolással könnyen beláthatjuk: Mindkét esetben a szürkével árnyékolt részt levágtuk, és a csíkok felső feléhez illesztve, az első téglalappal azonos méretű, vagyis azonos területű téglalapokat kaptunk
11. feladat: Rajzold meg azokat a tengelyesen szimmetrikus hatszögeket amelyeknek a mellékelt négyszög ¼- ed része!
A származtató alakzatot különböző szimmetrikus helyzetekbe tehetjük, éppen 5 megoldás van.
12. feladat: Az ábrán látható sokszög egy sokszög ¼ -ed része. Egészítsd ki az ábrát úgy, hogy az eredetihez hasonló négyszöget kapjál!
Az eredetivel hasonló, és 4 ugyanolyan alakzatot tartalmaz síkidom az ábrán látható:
13. feladat:Négy barát olyan téglalap alakú telket vett, amelynek az egyik oldala a másiknak a 1,5-szöröse. A telken 4 kút van, a rajzon látható módon. Hogyan osszák a telket négy kongruens részre úgy, hogy mindegyiknek 1-1 kút is jusson?
Tengelyesen és középpontosan szimmetrikus felosztást kell elérnünk. Egy ilyen felosztás az ábrán látható.
14. feladat: A négyzetbe rajzolt bevonalkázott ábrát 90°-kal 4-szer egymás után ugyanabba az irányba elforgatjuk a négyzet középpontja körül. A négyzetnek mely részei kerülnek 2-szer is fedésbe? Rajzzal válaszolj!
A négyszeri forgatás és a végső állapot a dupla fedéssel az alábbi rajzokon láthatók:
15. feladat:Adott egy olyan téglalap, amelynek a rövidebb oldala a hosszabb oldal ¾-e . Oszd fel a téglalapot: a) 4 négyzetre b) 6 négyzetre c) 8 négyzetre!
16. feladat: Hogyan lehet 5 darab a oldalú és egy darab 2a oldalú négyzetlapból egy újabb négyzetlapot kirakni?
17. feladat:A rajzon látható ABC háromszöget egy téglalap ¾- ed részének átdarabolásából kaptuk. Rajzoljuk meg az eredeti téglalapot!
Két lehetőség van. Az ábrákon a téglalap ¾-ed része, majd ennek a 4/3-ad része a téglalap látható.
18. feladat: Rajzolj meg egy olyan négyzetet amely 16 rácsnégyzetből áll, és rajzolj bele olyan tengelyesen szimmetrikus sokszöget, amelynek a kerülete ugyanakkora mint a négyzeté, de területe kisebb annál, és amelynek az oldalai csak a rácsvonalak lehetnek!
19. feladat: Tervezz vasútvonalat, amelynek 8 állomása közül 2 olyan, ahonnan csak egy irányba, 1 olyan, ahonnan kétféle irányba, 2 olyan, ahonnan három irányba, 3 olyan, ahonnan négyféle irányba lehet utazni, és bármelyik állomásról bármelyik másikra el lehet jutni! Az állomásokat ponttal jelöld, két-két szomszédos állomást pedig egy szakasz köt össze!
Egy vasútvonal az alábbiakban látható: 8 állomása közül 2 olyan, ahonnan csak egy irányba, 1 olyan, ahonnan kétféle irányba, 2 olyan, ahonnan három irányba, 3 olyan, ahonnan négyféle irányba lehet utazni, és bármelyik állomásról bármelyik másikra el lehet jutni!
20. feladat: Mekkora része lehet az (1)-es ábra területének a (2)-es –nél bevonalkázott ábra területe?
Mindkét satírozott rész az ábra ¼- ed része, így összesen az ½- ed része
21. feladat: Egy szabályos ötszögnek megrajzoljuk mindegyik átlóját. a) Hányféle egymástól különböző háromszöget alkotnak az ötszög oldalai és átlói?b) Összesen hány egyenlő szárú háromszög található az ötszögben?
22. feladat: A számozott L alakzatok közül melyik 2-2 vihető át egymásba:a) tengelyes tükrözéssel? b) eltolással? c) forgatva-eltolással? d) középpontos tükrözéssel?
tengelyes tükrözéssel: 1-2, 1-6, 2-5, 3-4, 5-6 • b) eltolással: 1-5, 2-6 • c) forgatva-eltolással: 1-4-5, 2-3-6 • d) középpontos tükrözéssel: 1-4, 2-3, 4-5, 3-6
23. feladat: Az ábrán látható alakzatokat vágd szét 2-2 egybevágó alakzatra!
24. feladat: Egy téglalap rövidebbik oldala 4, hosszabbik oldala 6 egység. Bontsd fel a téglalapot rendre 3, 6, 8 és 10 négyzetre
25. feladat: Amikor Balázs hazafelé ment a szakkörről, a vasútállomás órája fél 4-et mutatott. Érdekes- gondolta Balázs- amikor délután a szakkörre mentem, az óra nagymutatója akkor is „függőleges” helyzetű volt. Igaz, hogy akkor a kismutatóval bezárt szög 15°-kal kisebb volt mint most. Hány órakor lehetett Balázs az állomásnál, amikor a szakkörre ment?