650 likes | 830 Views
DVCS at JLab. Como, 11/06/2013. JLab published 6 GeV results. JLab 6GeV analysis in progress. JLab 12 GeV program. JLab published 6 GeV results. JLab 6GeV analysis in progress. JLab 12 GeV program. JLab. Duty cycle 100% E max 6 GeV P max 80%. ep ep g.
E N D
DVCS at JLab Como, 11/06/2013
JLab published 6 GeV results JLab 6GeV analysis in progress JLab 12 GeV program
JLab published 6 GeV results JLab 6GeV analysis in progress JLab 12 GeV program
JLab Duty cycle 100% Emax6 GeVPmax80%
ep epg DVCS@JLab HALL A Scattered Electron Left HRS LH2 / LD2 target Polarized Electron Beam g Charged Particle Tagger Electromagnetic Calorimeter N NucleonDetector
H(e,e’)X DVCS : exclusivity HRS+calorimeter ep -> ep ep -> ep0 0-> ep -> ep0 ep -> ep0N … H(e,e’)X - H(e,e’’)X' H(e,e’p) HRS+calorimeter + proton array H(e,e’)N • Good resolution : no need for the proton array • Remaining contamination 1.7%
DVCS Bethe-Heitler GPDs
Using the (first version) of the BKM formalism, one can extract a combination of the “Im” CFFs and their Q2-dependence
g DVCS@JLab e’ HALL B epaepg p JLab/ITEP/ Orsay/Saclay collaboration 420 PbWO4 crystals : ~10x10 mm2, l=160 mm Read-out : APDs +preamps
CLAS DVCS AUL x~0.16,-t~0.31,Q2~1.82 CLAS DVCS ALU
Given the well-established LT-LO DVCS+BH amplitude DVCS Bethe-Heitler GPDs Can one recover the 8CFFs from the DVCS observables?
In general, 8GPD quantities accessible (Compton Form Factors) with
Given the well-established LT-LO DVCS+BH amplitude Obs= Amp(DVCS+BH) CFFs DVCS Bethe-Heitler GPDs Can one recover the 8CFFsfrom the DVCS observables? Two (quasi-) model-independentapproaches to extract, atfixedxB, t and Q2(« local » fitting), the CFFsfrom the DVCS observables (leading-twist formalism)
M.G. EPJA 37 (2008) 319 M.G. & H. Moutarde, EPJA 42 (2009) 71 M.G. PLB 689 (2010) 156 M.G. PLB 693 (2010) 17 1/ «Brute force » fitting c2 minimization (with MINUIT + MINOS) of the available DVCS observables at a given xB, t and Q2 point by varying the CFFs within a limited hyper-space (e.g. 5xVGG) The problem can be (largely) undersconstrained: JLab Hall A: pol. and unpol. X-sections JLab CLAS: BSA + TSA 2 constraints and 8 parameters ! However, as some observables are largely dominated by a single or a few CFFs, there is a convergence (i.e. a well-defined minimum c2) for these latter CFFs. The contribution of the non-converging CFF entering in the error bar of the converging ones.
2/ Mapping and linearization If enough observables measured, one has a system of 8 equations with 8 unknowns Given reasonnable approximations (leading-twist dominance, neglect of some 1/Q2 terms,...), the system can be linear (practical for the error propagation) ~ DsLU ~ sinfIm{F1H+ x(F1+F2)H-kF2E}df ~ ~ DsUL ~ sinfIm{F1H+x(F1+F2)(H+ xB/2E) –xkF2E+…}df K. Kumericki, D. Mueller, M. Murray, arXiv:1301.1230 hep-ph, arXiv:1302.7308 hep-ph
unpol.sec.eff. + beam pol.sec.eff. c2minimization
unpol.sec.eff. + beam pol.sec.eff. beam spin asym. + long. pol. tar. asym c2minimization
unpol.sec.eff. + beam pol.sec.eff. beam spin asym. + long. pol. tar. asym beam charge asym. + beam spin asym + … c2minimization linearization
unpol.sec.eff. + beam pol.sec.eff. beam spin asym. + long. pol. tar. asym beam charge asym. + beam spin asym + … c2minimization linearization Moutarde 10 model/fit VGG model KM10 model/fit
Current extractions of CFFsfrom DVCS c2minimization VGG model linearization KM10 model/fit Moutarde 10 model/fit HIm:the t-slopereflects the size of the probedobject(Fourier transf.) The seaquarks(low x) spread to the periphery of the nucleonwhile the valence quarks (large x) remain in the center
c2minimization VGG model linearization ~ The axial charge (~Him) appears to be more « concentrated » than the electromagnetic charge (~Him)
JLab published 6 GeV results JLab 6GeV analysis in progress JLab 12 GeV program
Several DVCS analysisunderwaywithJLab 6 GeV data: CLAS : « e1-dvcs 1» (2005) and « e1dvcs2 » (2008) Analysis of the (pol. and unpol.) DVCS cross-sections
Several DVCS analysisunderwaywithJLab 6 GeV data: CLAS : « e1-dvcs 1» (2005) and « e1dvcs2 » (2008) Analysis of the (pol. and unpol.) DVCS cross-sections Four main analyzers: H.-S. Jo, F.-X. Girod, B. Guegan, N. Saylor fromwhom I borrowed a lot of material/slides and whom contribution isgreatlyacknowledged
Several DVCS analysisunderwaywithJLab 6 GeV data: CLAS : « e1-dvcs 1» (2005) and « e1dvcs2 » (2008) Analysis of the (pol. and unpol.) DVCS cross-sections Four main analyzers: H.-S. Jo, F.-X. Girod, B. Guegan, N. Saylor fromwhom I borrowed a lot of material/slides and whom contribution isgreatlyacknowledged « eg1dvcs » (2008) Analysis of the long.pol. targetasymmetries
Several DVCS analysisunderwaywithJLab 6 GeV data: CLAS : « e1-dvcs 1» (2005) and « e1dvcs2 » (2008) Analysis of the (pol. and unpol.) DVCS cross-sections Four main analyzers: H.-S. Jo, F.-X. Girod, B. Guegan, N. Saylor fromwhom I borrowed a lot of material/slides and whom contribution isgreatlyacknowledged « eg1dvcs » (2008) Analysis of the long.pol. targetasymmetries Hall A : Rosenbluthseparation of the DVCS cross-section (separation of DVCS and BH contributions)
Samples of CLAS « e1-dvcs2 » analysis 5.88 GeVbeamenergy
Samples of CLAS « e1-dvcs2 » analysis 5.88 GeVbeamenergy
Data MC Ratio Acceptances
From CFFs to spatial densities How to go from momentum coordinates (t) to space-time coordinates (b) ? (with error propagation) Burkardt (2000) Applying a (model-dependent) “deskewing” factor: and,in a first approach, neglecting the sea contribution