1 / 10

Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2011/2012

Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2011/2012 pro 9. ročník (13. – 18. úloha) VIII. označení digitálního učebního materiálu: VY_32_INOVACE_MA.9.038. Základní škola a Mateřská škola G. A. Lindnera Rožďalovice

manon
Download Presentation

Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2011/2012

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Řešení úloh v testech Scio z matematiky zadaných ve školním roce 2011/2012 pro 9. ročník (13. – 18. úloha) VIII. označení digitálního učebního materiálu: VY_32_INOVACE_MA.9.038 Základní škola a Mateřská škola G. A. Lindnera Rožďalovice projekt EUškolapro život, registrační číslo CZ.1.07/1.4.00/21.1977

  2. Metodické pokyny • Autor: Mgr. Roman Kotlář • Vytvořeno: srpen 2012 • Určeno pro 9. ročník • Matematika 2. stupeň • Téma: řešení úloh testů Scio • Očekávané výstupy: aplikuje logickou úvahu a znalosti dosud osvojeného učiva při řešení úloh testů Scio • Forma: žáci pracují samostatně • Pomůcky: počítač, dataprojektor • Zdroje: zadání testů Scio, obrázky – zdroj uveden přímo v daném slidu • Další pokyny: Při práci lze využít hlasovací zařízení a vyhodnotit nejrychlejšího řešitele, který získá nejvíce z možných 6 bodů (Lze pracovat i ve skupinách, kdy vytvoříme žlutou, modrou a zelenou skupinu, které mezi sebou soutěží. Pokud daná skupina nedokáže svoji úlohu vyřešit, může se o správné řešení pokusit jiná skupina.). Za podstatnou skutečnost lze považovat odůvodnění zvoleného řešení a pro kontrolu ukázat správné řešení. Hra může mít i více vítězů v případě rovnosti získaných bodů.

  3. 13. – 15. úloha testu Scio z matematiky pro 9. ročník (podzim 2011) 13. Obvod obdélníku ABCD je shodný s obvodem čtverce KLMN. Strana tohoto čtverce je shodná s šířkou obdélníku OPQR, jehož délka je 36 cm. Jaký je obvod obdélníku OPQR? 15. Vzdálenost místa A a místa B je na mapě s měřítkem 1 : 1 500 000 znázorněna úsečkou délky 9 cm. Za jak dlouho ujede skutečnou vzdálenost mezi místy A a B osobní automobil, který jede průměrnou rychlostí 60 km/h? 14. 20 dlaždičů vydláždí za 1,5 hodiny 30 m2 povrchu. O kolik minut se zkrátí doba dláždění, bude-li zde pracovat o 10 stejně výkonných dlaždičů více?

  4. 13. otázka testu Scio z matematiky pro 9. ročník (podzim 2011) Obvod obdélníku ABCD je shodný s obvodem čtverce KLMN. Strana tohoto čtverce je shodná s šířkou obdélníku OPQR, jehož délka je 36 cm. Jaký je obvod obdélníku OPQR? Nabízená řešení jsou: A) 104 cm; B) 120 cm; C) 140 cm; D) 144 cm. Řešení: Obvod obdélníka ABCD = 2 (a + b) = 2 (30 + 18) = 2 . 48 = 96 cm. Obvod čtverce KLMN je shodný s obvodem obdélníka ABCD, tedy 96 = 4a. Z toho vypočteme a = 96 : 4 = 24 cm. Šířka obdélníka OPQR je shodná se stranou čtverce, tj. š = 24 cm. Jestliže známe délku obdélníku OPQR, pak O = 2 (a + b) = 2 (24 + 36) = 2 . 60 = 120 cm. Správnou odpovědí je varianta B).

  5. 14. otázka testu Scio z matematiky pro 9. ročník (podzim 2011) 20 dlaždičů vydláždí za 1,5 hodiny 30 m2 povrchu. O kolik minut se zkrátí doba dláždění, bude-li zde pracovat o 10 stejně výkonných dlaždičů více? Nabízená řešení jsou: A) o 40 min; B) o 35 min; C) o 30 min; D) o 25 min. Řešení: Slovní úloha je úlohou na nepřímou úměrnost: 20 dlaždičů ……………. 1,5 hod 30 dlaždičů …………….. x hodin ------------------------------------------- 30 : 20 = 1,5 : x 30x = 20 . 1,5 30x = 30 / :30 x = 1 Pokud se počet dlaždičů zvýší o 10, pak se doba dláždění zkrátí z 1,5 hodiny na 1 hodinu. Doba dláždění se tedy zkrátí o 1,5 – 1 = 0,5 hod, tj. 30 minut. Správnou odpovědí je varianta C).

  6. 15. otázka testu Scio z matematiky pro 9. ročník (podzim 2011) Vzdálenost místa A a místa B je na mapě s měřítkem 1 : 1 500 000 znázorněna úsečkou délky 9 cm. Za jak dlouho ujede skutečnou vzdálenost mezi místy A a B osobní automobil, který jede průměrnou rychlostí 60 km/h? Nabízená řešení jsou: A) za 2 hodiny; B) za 2 hodiny 5 minut; C) za 2 hodiny 15 minut; D) za 2 hodiny 20 minut. Řešení: Měřítko mapy 1 : 1 500 000 znamená, že 1 cm na mapě je 1 500 000 cm ve skutečnosti, což je 15 000 m = 15 km. A obdobně 9 cm na mapě je 9 . 15 km ve skutečnosti, což je 135 km. Čas je roven podílu dráhy a rychlosti, tedy č = 135 : 60 = 2,25 hod, což je 2 hodin 15 minut. Správnou odpovědí je varianta C).

  7. 16. – 18. úloha testu Scio z matematiky pro 9. ročník (podzim 2011) 16. Od čísla pět celých pět set pět tisícin odečtěte číslo nula celá pět setin. K tomuto rozdílu přičtěte součet čísel pět celých pět setin a nula celá pět tisícin. Jaké je výsledné číslo? 18. Jaký dostaneme výsledek, jestliže sečteme jednu šestinu čísla 246 s jednou devítinou čísla 171 a od tohoto součtu odečteme pět dvanáctin čísla 96? 17. 2,5 (4x – 2) – 1,5 (4x – 2) = 0,5 (4x + 8) Jaké je řešení uvedené rovnice?

  8. 16. otázka testu Scio z matematiky pro 9. ročník (podzim 2011) Od čísla pět celých pět set pět tisícin odečtěte číslo nula celá pět setin. K tomuto rozdílu přičtěte součet čísel pět celých pět setin a nula celá pět tisícin. Jaké je výsledné číslo? Nabízená řešení jsou: A) 10,005; B) 10,051; C) 10,510; D) 10,550. Řešení: Vypočteme rozdíl: 5,505 – 0,05 = 5,455 Vypočteme součet: 5,05 + 0,005 = 5,055 K rozdílu přičteme součet: 5,455 + 5,055 = 10,510 Správnou odpovědí je varianta C).

  9. 17. otázka testu Scio z matematiky pro 9. ročník (podzim 2011) 2,5 (4x – 2) – 1,5 (4x – 2) = 0,5 (4x + 8) Jaké je řešení uvedené rovnice? Nabízená řešení jsou: A) x = 4; B) x = 3; C) x = 2; D) x = 1. Řešení: 2,5 (4x – 2) – 1,5 (4x – 2) = 0,5 (4x + 8) 10x – 5 – 6x + 3 = 2x + 4 4x – 2 = 2x + 4 / -2x + 2 2x = 6 / :2 x = 3 Zkouška: L(3)= 2,5 (4.3 – 2) – 1,5 (4 . 3 – 2 ) = 2,5 (12 – 2) – 1,5 (12 – 2) = 2,5 . 10 – 1,5 . 10 = 25 - 15 = 10 P(3)= 0,5 (4 . 3 + 8) = 0,5 (12 + 8) = 0,5 . 20 = 10 L(3) = P(3) Správnou odpovědí je varianta B).

  10. 18. otázka testu Scio z matematiky pro 9. ročník (podzim 2011) Jaký dostaneme výsledek, jestliže sečteme jednu šestinu čísla 246 s jednou devítinou čísla 171 a od tohoto součtu odečteme pět dvanáctin čísla 96? Nabízená řešení jsou: A) 36; B) 24; C) 20; D) 16. Řešení: Jedna šestina čísla 246 je 246 : 6 = 41. Jedna devítina čísla 171 je 171 : 9 = 19. Součet jedné šestiny čísla 246 a jedné devítiny čísla 171 je 41 + 19 = 60. Pět dvanáctin čísla 96 je (96 : 12) . 5 = 8 . 5 = 40. Ještě od součtu vypočtených pět dvanáctin odečteme: 60 – 40 = 20 Správnou odpovědí je varianta C).

More Related