320 likes | 508 Views
ZAKŁAD POMIAROWO - BADAWCZY ENERGETYKI „ENERGOPOMIAR-ELEKTRYKA” Sp. z o.o. Badania eksploatacyjne i diagnostyka w elektroenergetyce i przemyśle Konferencja Naukowo-techniczna Gliwice, 18-19 kwiecień 2013. Rozwiązania smart-grids dla wspomagania pracy układów elektroenergetycznych.
E N D
ZAKŁAD POMIAROWO - BADAWCZY ENERGETYKI „ENERGOPOMIAR-ELEKTRYKA” Sp. z o.o
Badania eksploatacyjne i diagnostyka w elektroenergetyce i przemyśle Konferencja Naukowo-techniczna Gliwice, 18-19 kwiecień 2013 Rozwiązania smart-grids dla wspomagania pracy układów elektroenergetycznych Grzegorz Grzegorzyca ZPBE Energopomiar-Elektryka
Wprowadzenie Wprowadzanie zaawansowanych technicznie rozwiązań jest możliwe dzięki: • gruntownej wiedzy specjalistów, • bardzo precyzyjnej analizie potrzeb, • przedstawieniu dobrych koncepcji i modeli, • obserwacji tendencji światowych w zakresie najnowszych technik pomiarowych i informatyki przemysłowej, • dużej konsekwencji działania.
na przestrzeni lat rozwiązania komputerowych systemów pomiarowych opracowywanych w ZPBE Energopomiar-Elektryka ulegały ewolucji technicznej, aktualne możliwości techniczne pozwalają na budowanie aplikacji klasy smart grids posiadających nowe własności funkcjonalne niemożliwe do osiągnięcia za pomocą starszych technologii. Ewolucja rozwiązań
System elektroenergetyczny aktualnie sieci elektroenergetyczne eksploatowane w Polsce jak i w innych krajach są przestarzałe i mało wydajne, w przeszłości SEE był projektowany i budowany przy założeniu, że generacja energii elektrycznej będzie odbywała się w dużych elektrowniach systemowych, a sieć będzie pełniła rolę jednokierunkowej dostawy energii do jej użytkowników.
istniejące ograniczenia, powstające nowe wymagania funkcjonalne oraz rosnące oczekiwania w zakresie optymalizacji pracy układów powodują konieczność przeprojektowania obecnych rozwiązań sieci elektroenergetycznych, rozwiązania w zakresie sieci inteligentnych mogą wspierać optymalny kosztowo oraz uwzględniający aspekty bezpieczeństwa działania model systemu elektroenergetycznego przeznaczonego do pracy dla warunków normalnych i awaryjnych, bez wykorzystania rozwiązań sieci inteligentnych system jest mniej elastyczny, mało stabilny i zbyt podatny na zakłócenia w funkcjonowaniu w tym również na zakłócenia związane z groźnymi awariami systemowymi np. typu BlackOut. Smart grids
elementy sieci inteligentnej pozwolą uwzględniać dynamiczną zmienność zapotrzebowania na energię elektryczną, umożliwiając między innymi właściwe wykorzystanie możliwości magazynowania nadmiaru wytworzonej energii, automatyczna detekcja stanów zakłóceniowych w SEE, przewidywanie możliwości wystąpienia perturbacji systemowych oraz zaimplementowane w układzie pomiarów i automatyki scenariusze automatycznej odbudowy i rekonfiguracji systemu elektroenergetycznego poddanego skutkom rozległych awarii stanowiąc ważną i pożądaną funkcjonalność możliwą do osiągnięcia w ramach rozwiązań smart grids. Nowe oczekiwania
prezentowane na wielu płaszczyznach wymiany doświadczeń tzw. „przypadki użycia” smart grids jednoznacznie wskazują, że podczas opracowywania koncepcji oraz wdrażania nowych rozwiązań technicznych konieczna jest gruntowna znajomość pracy systemu elektroenergetycznego i występujących w nim zjawisk fizykalnych, proces wprowadzania zmian technicznych jest zawsze ewolucyjny i nowe rozwiązania muszą zazwyczaj koegzystować z tradycyjnymi, nowe rozwiązania wymagają bardzo precyzyjnego określenia zarówno struktury jak i szczegółowych rozwiązań technicznych warstw aplikacyjnych projektów, które będzie uwzględniało i przewidywało wszelkie niuanse oraz możliwe scenariusze pracy nadzorowanego systemu elektroenergetycznego, Aspekty wprowadzania smart-grids
zagadnienia metrologiczne wymagają nowej perspektywy. Przykładowo dla rozwiązań klasy WAMS, priorytetami są bardzo precyzyjna synchronizacja pomiarów w dziedzinie czasu, pewność wyników, determinizm działania, powiązanie zróżnicowanych dynamicznie oraz czasowo sygnałów pomiarowych oraz wystarczająca dla poprawności funkcjonowania nadzorowanego procesu dokładność i wiarygodność wyznaczania podstawowych i pochodnych wielkości fizycznych, rozwiązania teleinformatyczne będące ważnym elementem składowym smart grids powinny charakteryzować się podwyższonym w stosunku do tradycyjnych rozwiązań poziomem bezpieczeństwa informacyjnego i niezawodności. Kluczowe znaczenie ma zapewnienie pełnego determinizmu działania systemu łączności. Aspekty wprowadzania smart-grids
EAZ usprawnia proces regulacji: SCO wyłączając wybrane odbiory wyrównuje bilans mocy w układzie i przyczynia się do stabilizacji częstotliwości w warunkach deficytu wytwarzania, Automatyka łączeniowa pozwala powiększać asynchronicznie pracujące obszary wyspowe, które są łatwiejsze w regulacji, Dobrze skoordynowana EAZ chroni układ przed dalszym niekontrolowanym rozpadem. Automatyka EAZ w procesie regulacji
układy pomiarowe P i f, oraz parametrów kryterialnych procesów łączeniowych, wspomagają regulację i synchronizację SEE, dokładna analiza zjawisk występujących podczas procesu regulacji i synchronizacji wymaga wyrafinowanych technik pomiarowych oraz oprogramowania, Specjalizowany WAMS zapewnia ciągłe monitorowanie, rejestrowania oraz wspomaganie on-line całego procesu regulacji poprzez realizację specjalizowanych deterministycznych w dziedzinie czasu funkcji pomiarowych, doradczych lub decyzyjnych. Urządzenia pomiarowe wspomagające automatykę łączeniową
Rejestracje częstotliwości po momencie wydzielenia układów wyspowych 4 listopada 2006
Rejestracje częstotliwości w wydzielonych układach w obrębie momentów synchronizacji
łączenia wielkich SEE posiada swoją specyfikę, bezpośrednio przed połączeniem UCPTE z CENTREL w październiku 1995 roku, ZPBE Energopomiar-Elektryka zarejestrował przebiegi charakterystycznych parametrów, wartości częstotliwości obydwu systemów były do siebie bardzo zbliżone. Wartość df zawierała się w granicach ±35mHz, a jej znak ciągle się zmieniał. Osiągnięcie zgodności kątowej napięć może zatem trwać bardzo długo (bardzo mała bliska zera wartość df i związane z tym zmiany kierunku wirowania wektora przesunięcia fazowego). Łączenia wielkich SEE
Przykład przypadków użycia smart-grids • układy EAZ realizowane zgodnie z nowymi koncepcjami będą wymagały wykorzystania dodatkowych układów pomiarowych wyznaczających wielkości dla adaptacyjnej EAZ, • wymagany będzie równoczesny pomiar zarówno wolno jak i szybko zmiennych wielkości realizowany w sposób ciągły w długim oknie czasowym,
Przykład przypadków użycia smart-grids • obecnie nowe rozwiązania zazwyczaj koegzystują z tradycyjnymi co oznacza, że aktualnie wprowadzane układy posiadają tylko pewne cechy i właściwości Smart Grids, które będą stopniowo rozszerzane o dodatkowe elementy składowe i funkcjonalności. • warto zaznaczyć, że niektórzy autorzy już jakiś czas temu zauważyli i prognozowali, że układy WAMS będą w niedalekiej przyszłości V-tą generacją elektroenergetycznej automatyki zabezpieczeniowej EAZ.
Przykład przypadków użycia smart-grids • rozwiązania smart grids w elektroenergetyce w pewnym momencie osiągną dojrzałość tradycyjnej EAZ. • deterministyczny układ zaprojektowany zgodnie z nowymi koncepcjami i zasadami, poprawny metrologicznie oraz wykorzystujący przemysłowe sieci komunikacyjne umożliwi realizację niezawodnych i wiarygodnych systemów klasy Smart Grids o poszerzonej funkcjonalności w zakresie EAZ oraz układów automatyki regulacyjnej.
Działalność normalizacyjna • prace związane ze smart-grids są prowadzone w Polsce w ramach działalności KT 304 do spraw „Aspektów systemowych dostaw energii elektrycznej” Polskiego Komitetu Normalizacyjnego (PKN), • obecnie opracowywane projekty norm lub normy, to w istocie początek prac normalizacyjnych w tej dziedzinie. Znacząca część prac komitetu jest jeszcze w bardzo wczesnej fazie realizacji.
działania oparte o solidne naukowe podstawy, kulturę techniczną, właściwy dobór dedykowanych i dostępnych technologii, standaryzację międzynarodową, unormowania prawno-organizacyjne zapewniające weryfikację i okresowe wzorcowanie całości pozwalają już dzisiaj tworzyć bardzo rozbudowane rozwiązania Smart Grids. Podczas tworzenia nowych systemów kluczowe znaczenie mają zdobyte wieloletnie doświadczenia. Podsumowanie