330 likes | 501 Views
Cryogenic system for the MYRRHA linac. Nicolas Chevalier Tomas Junquera 20.10.2012. Part 1 Heat load budget and operating temperature. Static heat load. For MYRRHA, short cryomodules : 5 W/m at 2K 40 W/m at 40 K. Cavity dynamic heat load at 2K.
E N D
Cryogenic system for the MYRRHA linac Nicolas Chevalier Tomas Junquera 20.10.2012
Part 1 • Heatload budget and operating temperature
Staticheatload • For MYRRHA, short cryomodules : • 5 W/m at 2K • 40 W/m at 40 K
Cavitydynamicheatloadat 2K * Values from prototype cavities : Podlech et al., Bosotti et al. , Visentin et al., Olry et al.
Coefficient of performance of cryoplant Close to XFEL or one LHC unit For MYRRHA, cryo power at 2K : ~14.2 kW Realistic goal : COP(2K) = 720 ; COP(4K)= 220 COP(2K)/COP(4K) = 3.3
Overcapacity. Total heatload budget LHC « recipe » isapplied for safety factor : Overcapacity factor : 1.5 speed cool-down, use machine < 100 % performance Uncertainty factor : 1.25 imperfect Nb, electronloading, imperfect MLI wrapping etc. Overallmargin : 1.875 Overall power similar to : LHC (18 kW), JLAB (11 kW), XFEL (12 kW), 2 x SNS (2 x 6.4 kW)
Heat load breakdown • Heatload distribution alonglinac: CH SPOKE LOW β ELL. HIGH β ELL. 150 W ~5.2 % 735 W ~27 % 635 W ~22 % 1360 W ~46% • heatloadisroughly25 % | 20 % | 50 % across the threesections • staticlosses~ ½ dynamicslosses smallcryomodule, lowfield • Dynamic range at 2K: Loadbeam on/beam off = (dynamic + static)/static Dynamic range = 2.8 LHC : 3 Important parameter for choice of refrigerationscheme (full cold compression or mixed compression)
Temperatureoptimization of the MYRRHA linac COP decreaseswith T, RBCS increaseswith T optimum of power consumption Optimal temperature: Broad minimum around 1.9-2 K
Possible 4K operation of Spokecavities • 2K operation of Spokecavitiesis the reference design for now • 4K operationshouldbetested on prototype Spokecryomodule • In the design phase, pipes shouldbesized to allow 4K and 2K operation
Part 2 Cryofluid distribution : valve box, transfer line and cool down characteristics
Distributed or central subcoolingheatexchanger • Distributed : • 2K subcoolingisachieved in each valve box via heatexchanger • Low pressure vaporisreturnedat 5K • Central : • 2K subcoolingisachieved in a single central heatexchanger; • Subcooledsupercriticalheliumisdistributed in a separatetransfer line • Low pressure vaporisreturnedat 2K
Subcoolingheatexchanger (SHX) specifications • LHC SHX canbeused if 1 SHX isused for 1 cryomodule • If 1 SHX feeds more than 1 cryomodule, SHX has to bemodified (up to 10 g/sec)
80K 3bar 40K 4 bar 6K 1.2 bar 4.5K 30 mbar Valve box : Spoke prototype Cryomodule 5K 3bar to conditioning TI TI CV SHX EV LI TI EV bypass POT TI TI JT SV RD vacuum barrier CD 4K FUV CV : conditioning valve EV : expansion valve CD : cooldown 4K FUV : JT : Joule-Thomson valve SHX : sucoolingheatexchanger SV : safety valve RD : rupture disk TI : temperature gauge LI : level gauge shield TI P LI 2K header TI TI TI TI beamline cavity coupler CC loop TI P TI TI
80K 3bar 40K 4 bar 6K 1.2 bar 4.5K 30 mbar Valve box : Spokeseries Cryomodule ? 5K 3bar TI TI All valves thatcanberemovedwithoutcompromising control shouldberemoved TI P LT TI TI TI P TI TI
80K 3bar 40K 4 bar 6K 1.2 bar 4.5K 30 mbar Valve box : Lowβelliptic Cryomodule 5K 3bar TI TI Similarscheme for highβellipticalisavailable TI EV JT P LT TI TI TI P TI TI
80K 3bar 40K 4 bar Alternative distribution scheme : 1 VB for 2 CM 6K 1.2 bar 4.5K 30 mbar 5K 3bar
Advantages of 1VB-1CM and 1VB-2CM solutions Reference solution willbe 1 VB – 1 CM as itseems more straightforward. But 1 VB – 2CM couldbe more economical in terms of cost and space (e.g. ceiling)
Operational modes, helium mass flows Wholelinac Per cryomodule
Transfer line • Transfer line isassumed to split • in two parts at middle of linac • Shieldingisprovided by thermalization • with 80 K return (LHC design)
Cold Mass Estimate Transfer line CM + VB
Cool down time Wholelinacat once (will not happen) Transfer line Cryomodule
Part 3 Cryogenic plant main components Implantation Reliability Preliminary cost analysis Conclusions
Placement of cryogenic plant and dimensions Heatload center of mass is close to geometrical center Hypothesis : - Building surface linearlyscaleswith power. - Scalingfrom LHC dimensions In agreement with XFEL (12 kW) dimensions.
Compressor Building : compressors B Bradu. Modelisation, simulation et contrôle des installations cryogeniques du cern. PhD Thesis, 2010.
Liquefier building 4.5 K cold box of the LHC • In MYRRHA (unlike LHC), • 4.5 K and 1.8 K cold box • canbefused in one cold box: • better COP, goal : 720 W/W @ 2K • how to handle large 5.4 kW @ 2K load ? 2.4 kW@ 1.8K cold box of the LHC :
Storage, heliuminventory LHC 20 bar gasstorageat point 1.8 MYRRHA need corresponds to one 250 m3 20 bar bottle
Claudet, “Lhc cryogenics, the approach towards availability,” 2011 • Commeaux, “Reliability of cryogenic facilities: a preliminary approach,” 2002 Reliability • High levels of availability of cryogenic systems (99 %) can be achieved if: • Mean Time Between Maintenance > 8000 hrs • Impurities : dryers to remove water , 80K adsorbers (air), 20 K absorbers (hydrogen), helium guard (2 joints) on 2K circuit • Elements containing moving/vibrating parts : turbines, compressors, etc. • At least two identical machines per stage • Double all oil filters and oil pumps • Periodic maintenance, oil checks, vibration surveillance program • Utilities : common cause of cryogenic system malfunction • Periodic insulation vacuum control (thermal cycling leaks) • Easily exchangeable cold compressors
Preliminarycostestimate of cryogenic system EUROTRANS report estimate for 8.5 kW @ 4.2 K plant : 24.5 M€ withoutmanpower So : Material 21-25 M€ + Manpower 7-8 M€ = Total 28-33 M€
Conclusions and perspectives • Location of compressor station : too close to linac ? Max achievabledampening of vibrations ? • Linac-refrigeratorconnection: over linac or under the linac ? • Valve box distribution scheme: 1 VB-1 CM or 1VB -2CM ? • Transfer line design, otherpossibilities (SNS, 2 concentrictransfer line ?) • Location of transfer line « T »junction: in cold box or in tunnel ? • How can the refrigeratorbe made more reliable ? rotating parts • How to integrate the 2K and 4K cold box ? Can the 720 W/W beachieved ? • How to handle the 5.4 kW 2K loadof MYRHHA (twicethat of the LHC) ? • Upgraded cold compressors ? Cold compressors in parallel ? • Detailedcostanalysis THANK YOU FOR YOUR ATTENTION. QUESTIONS ?