580 likes | 1.17k Views
ESTRUCTURAS I. INSTITUTO PROFESIONAL LOS LAGOS. PROFESOR: JORGE BRAVO G. CARRERA: CONSTRUCCIÓN CIVIL. INTRODUCCIÓN. De acuerdo a las Leyes de Newton, a toda acción corresponde una reacción.
E N D
ESTRUCTURAS I INSTITUTO PROFESIONAL LOS LAGOS PROFESOR: JORGE BRAVO G.CARRERA: CONSTRUCCIÓN CIVIL
INTRODUCCIÓN • De acuerdo a las Leyes de Newton, a toda acción corresponde una reacción. • Cuando se aplica una fuerza externa a un cuerpo sólido y este permanece estático, se produce una reacción interna que equilibra la fuerza externa. • La magnitud de la reacción interna es el esfuerzo y la consecuencia inmediata de la existencia de un esfuerzo es la deformación.
EFECTO DE UNA FUERZA SOBRE UN SÓLIDO • La magnitud de la reacción en cada enlace depende de la magnitud de la fuerza aplicada y de la cantidad de partículas que resisten la acción de esa fuerza. • La cantidad de enlaces que soporta tal fuerza esta directamente relacionada con el área transversal a la dirección en que actúa la fuerza. • La magnitud del efecto es directamente proporcional a F e inversamente proporcional a A
RESISTENCIA DE MATERIALES • Se ocupa del estudio de los efectos causados por la acción de cargas externas que actúan sobre un sistema deformable. • Calcula las deformaciones correspondientes y las relaciones que existen entre la acción de las cargas externas y las fuerzas internas inducidas. • En base al análisis, concluye si una pieza es capaz de resistir un sistema de cargas propuesto.
ENSAYOS MECÁNICOS a) Estáticos; que simulan el comportamiento del material con pequeñas velocidades de aplicación de las cargas: . Tracción . Compresión . Dureza b) Dinámicos; que modelizan el comportamiento frente a cargas variables con el tiempo: . Fatiga . Resiliencia
ALGUNOS CONCEPTOS • Ductilidad: Es la habilidad de un material para deformarse antes de fracturarse. • Es una característica muy importante en el diseño, puesto que un material dúctil es usualmente muy resistente a cargas por impacto. • Tiene además la ventaja de “avisar” cuando va a ocurrir la fractura, al hacerse visible su gran deformación.
ALGUNOS CONCEPTOS (CONT.) • Elasticidad: Es la habilidad que tiene un material que ha sido deformado de alguna manera para regresar a su estado y tamaño original, cuando cesa la acción que ha producido la deformación. • Cuando el material se deforma permanentemente, de tal manera que no pueda regresar a su estado original, se dice que ha pasado su límite elástico. • Dureza: Mide la resistencia a la penetración sobre la superficie de un material, efectuada por un objeto duro.
ALGUNOS CONCEPTOS (CONT.) • Fragilidad: Es lo opuesto de ductilidad. • Un material frágil no tiene resistencia a cargas de impacto y se fractura aún en cargas estática sin previo aviso. • Tanto la fragilidad como la ductilidad de un material son mediadas arbitrarias, pero puede decirse que un material con un alargamiento mayor de 5% es dúctil y menor de 5% es frágil.
ALGUNOS CONCEPTOS (CONT.) • Maleabilidad: Es la propiedad que permite que un material se deforme mediante martilleo, rolado o prensado, sin romperse. La maleabilidad, se aumenta normalmente cuando el metal esta caliente.
ALGUNOS CONCEPTOS (CONT.) • Plasticidad: Es la habilidad de un material para adoptar nuevas formas bajo la presión y retener esa nueva forma. • Esfuerzo (σ): Fuerza aplicada a un área A conocida.
ALGUNOS CONCEPTOS (CONT.) 7.1 Esfuerzo de Tensión o Tracción: Los extremos del material son estirados hacia afuera para alargar al objeto. 7.2 Esfuerzo de Compresión: Los extremos del material son empujados para hacer al material más pequeño.
ALGUNOS CONCEPTOS (CONT.) 7.3 Esfuerzo de Corte: El esfuerzo es tangencial.
ALGUNOS CONCEPTOS (CONT.) Deformación Unitaria (ε): Consideremos a la barra de sección constante que soportan una carga axial P en su extremo. Bajo la acción de la carga, la barra sufrirá una deformación que denominaremos con la letra griega (delta) • (épsilon): deformación unitaria • : deformación total (LF – LI ) L : longitud original
ALGUNOS CONCEPTOS (CONT.) • Deformación (Unitaria) Elástica • Deformación restaurable, debido a un esfuerzo aplicado. Se presenta tan pronto como se aplica la fuerza, permanece mientras se aplica el esfuerzo y desaparece tan pronto como se retira la fuerza. • Deformación Plástica • Deformación permanente de un material, cuando se quita el esfuerzo, el material no regresa a su forma original.
ENSAYO DE TENSIÓN • El Ensayo de Tensión mide la resistencia de un material (metales, aleaciones y plásticos) a una fuerza estática o aplicada lentamente, • Este ensayo es utilizado para determinar la resistencia, ductilidad y elasticidad del metal. • El ensayo de tensión se realiza bajo la norma ASTM E-8 o bien la norma chilena NCH 200, entre otras.
ENSAYO DE TENSIÓN Máquina hidráulica Baldwin para pruebas de Tensión & Compresión
ENSAYO DE TENSIÓN Probetas que se utilizan en el ensayo de tracción
ENSAYO DE TENSIÓN Esquema de probetas que se utilizan en el ensayo de tracción
ESFUERZO REAL Y DEFORMACIÓN REAL Curva típica de tracción hasta la fractura, punto F. La resistencia a la tracción está indicada en el punto M.
RESISTENCIA A LA TRACCIÓN (σmáx) • Esfuerzo obtenido con la máxima fuerza aplicada. • Es el esfuerzo máximo, basado en la sección transversal original, que puede resistir un material. • Es el esfuerzo en el cual comienza la estricción en los materiales dúctiles. Estricción: Reducción de la sección de la probeta, momento a partir del cual las deformaciones continuarán acumulándose hasta la rotura de la probeta por ese zona. La estricción es la responsable del descenso de la curva tensión-deformación
ESFUERZO DE RUPTURA (σr) • Es el esfuerzo basado en la sección original, que produce la fractura del material. • La deformación se concentra en la zona del cuello, provocando que la fuerza deje de subir. Al adelgazarse la probeta por estricción, la fuerza queda aplicada en menor área, provocando la ruptura. Esquema de la secuencia de ruptura de las probetas en un ensayo de tracción
DIAGRAMA TENSIÓN-DEFORMACIÓN Ensayamos a tracción una probeta de un determinado material. Para distintos valores de la carga medimos la tensión () y la deformación unitaria (ε) producidas. Representando gráficamente se obtiene el siguiente diagrama.
EJEMPLO DIAGRAMA TENSIÓN-DEFORMACIÓN Diagrama Tensión-Deformación para una aleación de aluminio
LEY DE HOOKE • Para materiales sometidos a esfuerzos tensionantes, a relativamente bajos niveles, el esfuerzo y la deformación son proporcionales • La constante E es conocida como el Módulo de Elasticidad, o Módulo de Young. Es una medida de la rigidez de un material. • Es medida en MPa y puede valer de ~4.5 x 104 a 4 x 107 MPa
ESFUERZO CORTANTE (τ) • El Esfuerzo Cortante es usado en aquellos casos donde se aplican fuerzas puramente torsionantes a un objeto y se denota por el símbolo τ. • La fórmula de cálculo y las unidades permanecen iguales como en el caso de esfuerzo de tensión. • Se diferencia del esfuerzo de tensión sólo en la dirección de la fuerza aplicada (paralela para cortante y perpendicular para tensión).
ESFUERZO CORTANTE Y DEFORMACIÓN • Deformación de Corte o Cizalle (γ) es definida como la tangente del ángulo θ y, en esencia, determina qué extensión del plano fue desplazado.
ESFUERZO CORTANTE Y DEFORMACIÓN • El Esfuerzo Cortante y la Deformación se relacionan de manera similar, pero con una constante de proporcionalidad diferente. • La constante G es conocida como el Módulo de Corte y relaciona el Esfuerzo Cortante con la deformación en la región elástica.
COEFICIENTE DE POISSON (ν) • Cuando un cuerpo es colocado bajo un esfuerzo tensionante, se crea una deformación acompañante en la misma dirección. • Como resultado de esta elongación, habrá constricciones en las otras dos direcciones. • El Coeficiente de Poisson (ν) es la relación entre las deformaciones lateral y axial.
COEFICIENTE DE POISSON • Teóricamente, los materiales isotrópicos tienen un valor de Coeficiente de Poisson de 0.25. • El máximo valor de ν es 0.5 • No hay cambio de volumen durante el proceso. • La mayoría de metales presentan valores entre 0.25 y 0.35. • Se usa además para relacionar los Módulos Elástico y de Corte.
RESILIENCIA • Es la capacidad de un material para absorber energía cuando es deformado elásticamente y devolverla cuando se elimina la carga (área bajo la curva elástica). • Módulo de resiliencia: corresponde a la energía de deformación por unidad de volumen, requerida para llevar el material desde una tensión cero hasta el límite elástico.
TENACIDAD • Capacidad de absorber energía en el campo plástico, antes de fracturarse (trabajo de fractura). • Se determina como el área bajo la curva esfuerzo-deformación ingenieril. Esta superficie es una indicación del trabajo total, por unidad de volumen que puede realizarse sobre el material sin que se produzca rotura
CONVENCIÓN DE SIGNOS Esfuerzo Axial Simple:
TENSIÓN ADMISIBLE • Es un valor que indica el nivel máximo de solicitación al cual puede trabajar un material. • La tensión de trabajo no debe sobrepasar la tensión admisible. • Este valor se determina arbitrariamente, aunque procurando no sobrepasar el rango elástico del material, pues de otro modo, podría sufrir deformaciones permanentes
FACTOR DE SEGURIDAD • Es un valor que permite reducir los niveles de incertidumbre en los cálculos de Ingeniería. Este coeficiente debe ser mayor a 1. • Este valor relaciona la resistencia que posee el material con las cargas a las que va a estar sometido.
ELASTICIDAD VOLUMÉTRICA • Al igual que en el caso lineal, existen módulos de elasticidad de área y volumen. • Para el caso del módulo de elasticidad de volumen, se tiene lo siguiente. B = - (F/A)/ (V/V) B = - P/ (V/V)
EXPANSIÓN TÉRMICA • Corresponde a las variaciones de dimensión en un material producto de los cambios de temperatura en el mismo. Y la ecuación es la siguiente: En donde: Expansión Térmica Coeficiente de Expansión Térmica Longitud inicial del miembro Cambio de temperatura
EXPANSIÓN TÉRMICA • Coeficiente de expansión térmica (α): es la propiedad de un material que indica la cantidad de cambio unitario dimensional con un cambio unitario de temperatura. • Las unidades en que se exprese el coeficiente de expansión térmica son: E.U.G SI
DEFORMACIÓN QUE CAUSA LA EXPANSIÓN TÉRMICA Esfuerzo Térmico: Estos esfuerzos se generan cuando a un elemento sometido a cambios de temperaturas se le sujeta de tal modo que impida la deformación del mismo, esto genera esfuerzos en la pieza. Recordando que: Por la Ley de Hooke: En donde: Expansión Térmica Coeficiente de Expansión Térmica Módulo de elasticidad Cambio de temperatura
DETERMINACIÓN ESTÁTICA • Se habla de que una estructura es estáticamente determinada cuando posee los apoyos necesarios para evitar todos los posibles movimientos de la estructura. • Cuando la estructura posee menos apoyos de los necesarios para evitar movimientos en la estructura, se dice que es estáticamente indeterminada y se le llama hipostática o “mecanismo”.
DETERMINACIÓN ESTÁTICA • Cuando una estructura es estáticamente determinada pueden ocurrir dos casos: • Estructura Isostática: Posee los apoyos estrictamente necesarios para evitar los movimientos de la estructura. Es sencillo calcular los esfuerzos, pues hay el mismo número de ecuaciones que de incógnitas. • Estructura Hiperestática: Posee más apoyos de los estrictamente necesarios para evitar los movimientos de la estructura. En este caso, existen más incógnitas que ecuaciones, por lo que se complica calcular los esfuerzos.
CENTRO DE MASA • El Centro de Masa es el punto en donde se considera que se encuentra concentrada la masa de un cuerpo. • Es un punto único, independiente de la posición y orientación del sólido.
y m4 m3 r4 m2 m5 x r1 r6 m6 m1 CENTRO DE MASA • Para un conjunto de masas puntuales, el Centro de Masa se calcula:
y rCM x z CENTRO DE MASA • Para una distribución continua de masa, el Centro de Masa se calcula: r
MOMENTO DE INERCIA Es la forma en que se distribuye la masa en torno al eje de giro. Por ejemplo, para una misma varilla que gira en torno a dos ejes distintos, los momentos de inercia también son distintos.
MOMENTO DE INERCIA Se ha definido el momento de inercia de un objeto con respecto al eje z como: Caso Sistema Discreto (masas puntuales) Caso Sistema Continuo (masa distribuida)