5.15k likes | 11.26k Views
Pİ SAYISI. Pi Sayısının T arihsel G elişimi Eski Mısırlılarda Pi S ayısı Mezopotamyalılar ve Pi S ayısı Eski Yunanlılar ve Pi S ayısı Türk- İ slam Dünyası ve Pi S ayısı Pi Sayısının İ rrasyonelliği Pi Sayısının Ü stelliği Pi Sayısının İ lk 1000 Basamağı
E N D
Pİ SAYISI Pi Sayısının Tarihsel Gelişimi Eski Mısırlılarda Pi Sayısı Mezopotamyalılar ve Pi Sayısı Eski Yunanlılar ve Pi Sayısı Türk- İslam Dünyası ve Pi Sayısı Pi Sayısının İrrasyonelliği Pi Sayısının Üstelliği Pi Sayısının İlk 1000 Basamağı Pi Sayısının Kronolojik Gelişimi
Pİ SAYISI HAKKINDA İnsanoğlu; daire dediğimiz kendine özgü düzgün yuvarlak şeklin farkına, tekerleğin icadından çok önceki tarihlerde varmıştır. Bu şekli, diğer insan ve hayvanların göz bebekleriyle gökyüzündeki Güneş ve Ayda görüyordu. Derken elindeki sopa ile kum, gibi düzgün yüzeylere daire çizdi. Görülüyor ki, dairenin bir ucundan öteki ucuna olan uzaklığı(çapı), büyürse çevresi de o kadar büyüyordu. Sonra yine düşündü, Cilalı Taş devri insanı artık soyutlamasını yapmıştı.
Dairenin; çevresinin uzunluğu ile çapının uzunluğu orantılıydı. Çevrenin çapa oranı, daireden daireye değişmiyor, sabit kalıyordu. Demek ki bugünkü gösterim şekli ile bu sabit orana dersek; çevre/çap= sabit. Şeklinde yazılabiliyordu. Bu oranın sabitliği anlaşıldıktan sonra, sabit oran değerinin, sayı olarak belirlenmesi gerekiyordu.
Pİ SAYISININ TARİHSEL GELİŞİMİ • Kaynaklar, sayısı için ,gerçek değerin ilk kez Archimides(M.Ö.287-212) tarafından kullanıldığını belirtir. Ancak Archimides’ten önce Eski Mısırlılar da ve Mezopotamya Babil devrinde,Archimides’ten sonra da ,15.yy Türk-İslam dünyasının ünlü matematikçisi GıyasüddinCemşid (?-Smerkant1429?) tarafından , sayısı için yaklaşık bazı değerler kullanılmıştır.
sembolü Yunan alfabesinin 16 . Harfidir. Bu harf aynı zamanda yunanca çevre(çember) anlamıma gelen ‘’perimertier’’ kelimesinin de ilk harfidir.
ESKİ MISIRLILAR VE Pİ SAYISI • sayısına ait ilk bilgileri Eski Mısırlılar’da mevcut olduğunu görüyoruz. Mısırlılar ,yüzey ve hacim hesaplamaları yaparken, sayısına ait yaklaşık değer kullanmışlardır.
Eski Mısırlılar ‘dan kalma papirüsleri özelikle ,Rhind Papirüsünün değerlendirilmesi sonucu,daire alanı için bugünkü gösterim şekliyle : • A = [1-(1/9)]2 .R2 (1) • Formülünü kullandıkları anlaşılmaktadır.(Burada R yarıçapı göstermektedir.) • Bu formül, yarıçapı cinsinden düşünüldüğünde, bugünkü gösterim ve düşünce şekline göre: .r2 = (8/9)2 .R2 (2) Şeklinde yazılabilir.
Burada, 1 birim yarıçaplı çember düşünerek, r ve R için bilinen değerleri yazarsak: = 4.(8/9)2 = (16/9)2 (3) sonucu elde edilir. Bu durumda; eski Mısırlıların için, 4.(8/9) 2 değerlerini kullanmış oldukları anlaşılmaktadır. (3) değerini, ondalık kesir şeklinde kısaca: = 4.(8/9)2 = 4.(64/81) = 3,1604 (4) elde edilir. Fakat için bazen kısaca 3 değeriyle yetinildiği oluyordu. Bu durum da;bugünkü gösterim şekliyle düşünüldüğünde ,Eski Mısırlıların, sayısı kavramı bildikleri ve değerleri için 3,160 değerini Archimides ‘ten 2700 yıl bu kadar önce kullanmış oldukları anlaşılmaktadır.
sayısının değeri M.Ö.2800-2700 yıllarına ait Gize Kasabası yakınlarındaki büyük Keops Piramidi’nin ölçülerine göre hesaplanabilmektedir. • Keops Piramidi üzerinde yapılan incelemeler ,bu piramidin inşa edildiği tarihte , bu günkü ölçü birimi ile 232,805 metre kenarlı bir kare tabanı olduğunu ve 148.208 metre yüksekliğinde bulunduğu izlenmiştir.
Tabanın çevresi:(4x232,805)=931,22metre olacağından,bu çevrenin yükseklik değerinin iki katına bölünmesiyle : • (931,22)/(2x148,208)=3,14159sayısı beş ondalıklı yakınlıkla; sayısının bilinen değerini vermektedir. • Özet olarak belirtecek olursak ; Eski Mısır mühendis ve mimarları, kutsal anıtları olan Büyük Keops Piramidi’nin inşası sırasında, sayısının değerini biliyorlardı. Mühendislik hizmetlerinde; sayısının değerini maharetle kullanmış oldukları sonucu elde edilmektedir.
MEZOPOTAMYALILAR VE Pİ SAYISI • sayısı üzerinde Babiller’in çok eski zamanlardan beri kullanılan yaklaşık bir bilgiye sahip oldukları anlaşılmıştır. Genel olarak = 3 değerini kullanıyorlardı. • Bazı tabletlerde nin yerine yani =3,125 değerine de rastlanılmaktadır.
Sonuç olarak denilebir ki; Eski Mısırlılar’ın Anıt-Piramit yüksekliği için; kare tabana, çevrece eşit bir dairenin çapını almak suretiyle, adeta mistik bir sayı olan irrasyonel sayısına büyük önem verme ihtiyacını duydukları ve bu sayede(dolaylı yoldan) bilime hizmet ettikleri görülmektedir.
Aydın Sayılı, adı geçen eserinde , “Mezopotamyalılar da, idealleştirilmiş çemberlerle üçgenlerdeki geometrik münasebetler aracılığıyla, çözümlenen problemlerde teorikleştirilmiş ve soyutlaştırılmış bir durum açıkça mevcuttur.” der.
Böyle problemlerde sonuç hesaplanırken için, 3 değerinin kullanılmış olduğunu belirtir. Bu değeri; Mezopotamyalılar takribi sonuçlar için kullanmaktaydılar. Daha iyi yaklaşık sonuçlar elde etmek istedikleri zaman =3,125 değerini kullanıyorlardı.
Ancak ‘ ninMısırlılar’ınkinden ve Susa tabletlerinin gösterdiği değerden oldukça daha iyi bir değere, ilk önce Archimides tarafından bulunmuştur. Kaynaklar; Mezopotamyalılar’ın, yamuk alanı hesabı ile silindir ve prizma hacim hesaplarını bildiklerini ve içinde 3 değerini kullandıklarını belirtti. Fakat eski Babil Çağına ait olup, Susa’da bulunmuş olan tabletlerde için kabul edilen değerin yani 3, 125 olduğu anlaşılmaktadır.
ESKİ YUNALILAR VE Pİ SAYISI Kaynaklar sayısı için, ilk gerçek değerin, Archimides tarafından kullanıldığını belirtir. Archimides ; sayısının değerini hesaplamak için bir yöntem vermiş ve değerini 3 tam 1/7 ile 3 tam 10/71 arasında tespit etmiştir. Bu iki kesrin ondalık sayı olarak karşılığı 3,142 ve 3,1408 dir. Bu iki değer, sayısının bugünkü bilinen değerine çok yakın olan bir değerdir. Archimides gençlik yıllarında Mısır’da İskenderiye’de uzun süre öğrenim gördüğü bilinmektedir. Bu öğrenim sırasında, Cona ve Erotostanes adlı iki samimi arkadaş edinmiş olur. Archimes’in fikri yapılarının temelinde bu iki matematikçiye ait izlerin bulunduğunu belirtmek gerekir. Aynı zamanda Archimides’in Öklid’den ders aldığı bilinmektedir.
TÜRK-İSLAM DÜNYASI VE Pİ SAYISI 15. Yüzyıl Türk-İslam dünyası ünlü matematik ve astronomi alimi GıyasüddinCemşid, sayısının değerini, 16 ondalığına kadar ve doğru olarak ilk hesaplamıştır. GıyasüddinCemşid’in ,”Risaletül fi Muhitü’l Daire” adlı eserinde, pi sayısı için verdiği değer: = 3,1415926535898732 dir. 15. yüzyılda, sayısının, ancak altıncı ondalığa kadar olan değeri bilinmiş olduğuna 16. ondalığa kadar doğru değerinde, batı bilim dünyasında Hollandalı Matematikçi Adriaen Van Rooman tarafından, doğru olarak hesaplandığına göre, GıyasüddinCemşid’in bu konuda da zamanın matematiğinden 200 yıl ilerde olduğu ortaya çıkmaktadır.
Pİ SAYISININ İRRASYONELLİĞİ Matematikçiler bekliyorlardı ki, bir yerden sonra basamaklar önceki değerini tekrar etsin, yani devirli bir ondalık sayı halinde yazılabilsin. Ama bu olmadı. Sonunda 1761 yılında, İsviçre’li matematikçi Lambert, ‘nin irrasyonel olduğunu, yani dairenin çevresi ile çapının bir ortak ölçüsü olmadığını ispatladı.
Pİ SAYISININ ÜSTELLİĞİ sayısına ait değerin ,gittikçe daha fazla basamağını hesaplama tutkusununun yanı sıra ,matematikçilerin rüyalarına giren başka bir problemi de ,daireiyi kare yapma problemiydi.bu uğraşıyla kendilerini kaptıranların önderi Anaksagoras’tır.(M.Ö.500-428) Daha sonra kilyosluHipokrates(M.Ö.. Yüzyılın ikinci yarısı)yandaki şekilde taranmış ACBA alanının,AOB üçgenininalanına eşit olduğunu gösterir.
1775’te Euler,1794’te Legendranin belki de cebirsel bir sayı olmadığına ,üstel bir sayı olması gerektiğine ilişkin inançlarını belirtirler.fakat ‘inin üstel olduğunu kanıtlanması için 100 yıl beklendi. Sonunda 1882 yılında Alman matematikçi Lindermann ‘nin üstel olduğunu hesapladı.
Pİ SAYISININİLK1000 BASAMAĞI • Aşağıda pi sayısının ilk 1000basamağı verilmiştir. 3,14159265358979323846264338327950288419716939937510 58209749445923078164062862089986280348253421170679 82148086513282306647093844609550582231725359408128 48111745028410270193852110555964462294895493038196 44288109756659334461284756482337867831652712019091 45648566923460348610454326648213393607260249141273 72458700660631558817488152092096282925409171536436 78925903600113305305488204665213841469519415116094 33057270365759591953092186117381932611793105118548 07446237996274956735188575272489122793818301194912 98336733624406566430860213949463952247371907021798 60943702770539217176293176752384674818467669405132 00056812714526356082778577134275778960917363717872 14684409012249534301465495853710507922796892589235 42019956112129021960864034418159813629774771309960 51870721134999999837297804995105973173281609631859 50244594553469083026425223082533446850352619311881 71010003137838752886587533208381420617177669147303 59825349042875546873115956286388235378759375195778 18577805321712268066130019278766111959092164201989...
Pİ SAYISININ KRONOLOJİK GELİŞİMİ • M.Ö. 2000 : Eski Mısırlılar = (16/9)2 = 3.1605 değerini kullanıyorlar. • M.Ö. 2000 : Mezopotamyalılar Babil devrinde = 3,125 değerini kullanıyorlar. • M.Ö. 1200 : Çinliler = 3 değerini kullanıyorlar. • M.Ö. 550 : Kutsal Kitapta (I. Krallar 7 : 23) , = 3 anlamına geliyor • M.Ô. 434 : Anaksagoras daireyi kare yapmaya girişir. • M.Ô. 300 : Yılları, Archimidesninolduğunu buluyor. Bundan başka yaklaşık olarak =211875/67441 kesrini de buluyor. • M.S. 200 : Yıllarında, Batlamyos = (377/120) = 3.14166 değerini kullanıyor. • M.S. 300 : Yılları, ÇüngHing = √10 = 3.166 değerini kullanıyor. • M.S. 300 : Yılları, VangFau = (142/45) = 3.155 değerini kullanıyor. • M.S. 300 : Yılları, LiuHui = (471/150) = 3.14 değerini kullanıyor. • M.S. 500 : Yılları, ZuÇung-Çi 3.1415926< < 3.1415927 olduğunu buluyor. • M.S. 600 : Yılları Hintli Aryabhatta = (62832/2000) = 3.1416 değerini kullanıyor.
M.S. 620 : Hintli Brahmagupta = (m/10) değerini kullanıyor. Bazı kaynaklarda da Brahmagupta'nın için değerini kullandığı belirtilir. • M.S. 1200 : İtalyan Fibonacci = 3.141818 • M.S. 1436 : Semankant Türkü GiyasüddinCemşid el Kaşi, 'yi14 basamağa kadar elde ediyor. Bu değer bugünkü kabul edilen değere göre doğrudur. • M.S. 1573 : ValentinusOtho = (355/113) = 3.1415929 olduğunu buluyor. • M.S. 1593 : Hollanda'lıAdriaenvanRooman'yi 15 basamağa kadar hesaplıyor. • M.S. 1596 : Hollandalı Lodolph ve Cevlen 'yi35 basamağa kadar hesaplıyor. (Bu nedenle Almanya'da sayısı, Lodolph sayısı diye de bilinir.) • M.S. 1705 : Abraham Sharp ‘yi 72 basamağa kadar hesaplıyor. • M.S. 1706 : John Machin ‘yi 100 basamağa kadar hesaplıyor. • M.S. 1719 : Fransız De Lagn ‘yi 127 basamağa kadar hesaplıyor.
M.S. 1737 : LeonardEuler'inbenimsemesiyle sembolü evrensellik kazanıyor. • M.S. 1761:lsviçreliJohaunHeinrich Lambert ‘ninirrasyonelliğini kanıtlıyor. • M.S. 1775 : İsviçre'li matematikçi, L. Euler’ninüstel olabileceğine işaret ediyor. • M.S. 1794 : Fransız Adrien-MarieLegendre’nin ve 2nin irrasyonelliğini kanıtlıyor. • M.S. 1794 : Vega’yi140 basamağa kadar hesaplıyor. • M.S. 1844 : Avusturyalı SchulzvonStrassnigtzky ‘yi200 basamağa kadar hesaplıyor. • M.S. 1855 : Richter ’yi500 basamağa kadar hesaplıyor. • M.S. 1874 : lngiliz W. Shanks’ yi707 basamağa kadar hesaplıyor. • M.S. 1882 : Alman FerdinanLindemann’ ninüstel bir sayı olduğunu kanıtlıyor. • M.S. 1947 : İlk bilgisayar ENİAC ’yi2035 basamağa kadar hesaplıyor. • M.S. 1958 : F. Genuys tarafından, Chiffers I de yayınlanan makalede, sayısının değeri 10.000 nci ondalık basamağakadar hesaplanmıştır.