250 likes | 359 Views
DRAG E X A M P L E S. F y =d(mv)/dt =0. A = ? U = 6 m/s. Drag Force = C D ½ U 2 A. Force of Gravity = mg = 120kg x 9.8 ms -2 Drag Force = C D ½ U 2 A = 1.42 ½ 1.23 kg/m 3 (6 m/s) 2 d 2 /4. F D = mg
E N D
DRAG E X A M P L E S
Fy=d(mv)/dt =0 A = ? U = 6 m/s Drag Force = CD ½ U2A
Force of Gravity = mg = 120kg x 9.8 ms-2 Drag Force = CD ½ U2A = 1.42 ½ 1.23 kg/m3 (6 m/s)2 d2/4 FD = mg d = [(8/)(120kg)(9.8 m/s2) (1/1.42)(1/1.23 kg/m3)(1/6m/s)2 d = 6.9 m FD = CD ½ U2A mg = 120 kg x 9.8 ms-2 U = 6 m/s
FD = CD ½ U2A Fx = d(mv)/dt
FD = CD ½ U2A FD = ma = m(dU/dt) = m(dU/dx)(dx/dt) CD ½ U2A = m (dU/dx) U
CD ½ U2A = m (dU/dx) U dU/U = CD A dx /(2m) Integrating from x=0 to x=x gives: ln Uf – lnUi = CD Ax /(2m) CD = 2m ln {Uf/Ui} /[ Ax] CD = 0.299
(A) No wind: max speed = 37km/hr M = 80 kg; FR = 4 N; CD = 1.2; A = 0.25 m2 (B) Head wind = 10 km/hr, maximum ground speed = 30 km/hr Is this possible? • FD = CD ½ U2A • Fx = 0 ?
(#1) No wind: max speed = 37km/hr M = 80 kg; FR = 4 N; CD = 1.2; A = 0.25 m2 (#2) Head wind = 10 km/hr, maximum ground speed = 30 km/hr Is this possible? FD = CD ½ U2A Power(#2) < or = Power(#1)
FT = FR + FD Find POWER = F U for this condition And then see if that is enough to win bet.
8.33 m/s 2.78 m/s P = U FT = U(FR + FD)
FD = CD ½ U2A Total Power = FDU + FRU
FD = CD ½ U2A A = 23.4 ft2 CD = 0.5 FR = 0.015 x 4500 lbf FD = FR to find U where aerodynamic force = frictional force Total Power = FDU + FRU
Where does aerodynamic force = frictional force ? FD = FR CD ½ U2A =.015xW (0.5)½ 0.00238slug/ft3U2(23.4ft2) = 0.015 x 4500 lbf U2 = 67.5/0.0139 U = 69.7 ft/s = 47.5 mph