1 / 42

Drgania i fale

Drgania i fale. Ruch drgający. Drgania – zjawiska powtarzające się okresowo. Drgania harmoniczne – wielkość drgająca zmienia się sinusoidalnie lub cosinusoidalnie w czasie. Przykłady drgań: wahadło zegara drgania mostu, wywołane przejeżdżającymi pojazdami drgania skrzydeł samolotu

mendel
Download Presentation

Drgania i fale

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Drgania i fale

  2. Ruch drgający Drgania – zjawiska powtarzające się okresowo Drgania harmoniczne – wielkość drgająca zmienia się sinusoidalnie lub cosinusoidalnie w czasie • Przykłady drgań: • wahadło zegara • drgania mostu, wywołane przejeżdżającymi pojazdami • drgania skrzydeł samolotu • drgania atomów (molekuł) w węzłach sieci krystalicznej • obwód drgający LC • .........

  3. Wielkości opisujące ruch harmoniczny Okres ruchu harmonicznego (T) – czas trwania jednego pełnego drgania, czas powtarzania się każdego pełnego przemieszczenia lub cyklu Częstotliwość drgań () – liczba drgań (cykli) w jednostce czasu Położenie równowagi – położenie, w którym na punkt materialny nie działa żadna siła Przemieszczenie – odległość drgającego punktu od położenia równowagi w dowolnej chwili

  4. -A +A 0

  5. Na oscylator działa siła harmoniczna Z II zasady dynamiki Newtona Jest to równanie różniczkowe drgań harmonicznych

  6. Wahadło wykonuje ruch harmoniczny. Papier rejestratora przesuwa się ze stałą prędkością v – pozostawiony ślad – wychylenie wahadła z położenia równowagi - można opisać funkcją okresową x(t) v

  7. x0 -A +A 0 Jeśli, np.

  8. Przemieszczenie, prędkość i przyspieszenie zmieniają się w ruchu harmonicznym okresowo. częstość drgań własnych częstość drgań własnych zależy od współczynnika sprężystości i masy ciała

  9. Energia kinetyczna drgań Energia potencjalna drgań Energia całkowita

  10. Ruch falowy równanie różniczkowe fali Rozwiązanie: okres drgań liczba falowa częstość drgań długość fali

  11. prędkość fazowa fali

  12. Rodzaje fal Fala płaska

  13. Fala kulista

  14. Fala poprzeczna – cząsteczki ośrodka drgają prostopadle do kierunku rozchodzenia się fali (np. w strunie) Fala podłużna – cząsteczki ośrodka drgają równolegle do kierunku rozchodzenia się fali (np. dźwięk)

  15. Zasada superpozycji Kilka fal może przebiegać ten sam obszar przestrzeni niezależnie od siebie. Przemieszczenie dowolnej cząstki w ustalonej chwili t jest sumą przemieszczeń wywołanych przez poszczególne fale. Zasada superpozycji obowiązuje gdy równania rządzące ruchem falowym są liniowe, tzn. w granicach stosowalności prawa Hooke’a Interferencja fal Dwa ciągi falowe interferują ze sobą jedynie wtedy, gdy drgania źródeł wytwarzających oba ciągi fal różnią się w fazie o stałą wielkość przynajmniej przez czas odpowiadający dużej liczbie okresów. Fale spełniające ten warunek – fale koherentne lub spójne

  16. Interferencja dwóch ciągów falowych różniących się fazą w ustalonej chwili t wywołują drgania przesunięte wzdłuż osi x o w ustalonym punkcie x wywołują drgania przesunięte w czasie o

  17. Zasada superpozycji pozwala zapisać amplituda powstałej fali Fale przesunięte o 180o wygaszają się!!!

  18. Fale zgodne w fazie wzmacniają się!!!

  19. Dla innej różnicy faz np.

  20. Falastojąca

  21. Minimalna amplituda węzły fali stojącej

  22. Maksymalna amplituda Strzałki fali stojącej

  23. t (0, 200 s)

  24. Elementy akustyki Dźwięk – mechaniczna fala podłużna rozchodząca się w cieczach, ciałach stałych i gazach zakres słyszalny 20 Hz – 20 000 Hz do 20 Hz – infradźwięki, powyżej 20 kHz - ultradźwięki

  25. W przypadku oscylacji harmonicznych liczba falowa częstość drgań Zmiana ciśnienia płynu spowodowana rozchodzeniem się fali akustycznej B – moduł sprężystości objętościowej lub moduł ściśliwości

  26. W granicy Ciśnienie zmienia się harmonicznie. Prędkość fali gęstość płynu na zewnątrz strefy zgęszczenia

  27. amplituda ciśnienia Falę dźwiękową można traktować jako falę przemieszczeń albo jako falę ciśnieniową

  28. Prawo Webera-Fechnera - relacja pomiędzy fizyczną miarą bodźca a reakcją układu biologicznego. Dotyczy ono reakcji na bodźce takich zmysłów jak wzrok, słuch czy poczucie temperatury. Jest to prawo fenomenologiczne będące wynikiem wielu obserwacji praktycznych i znajdująca wiele zastosowań technicznych. • Prawo to można wyrazić wzorem                   • gdzie: • w - reakcja układu biologicznego (wrażenie zmysłowe), • B - natężenie danego bodźca, • B0 - wartość progowa natężenia danego bodźca (najniższą wartość bodźca rejestrowanego przez ludzkie zmysły), (I0 = 10-12 W/m2) • Tak więc ocena głośności dźwięku zależy od logarytmu ciśnienia akustycznego na membranie bębenka, Inną konsekwencją prawa Webera-Fechnera jest fakt, że aby uzyskać liniową skalę, np. w pokrętle głośności radia (dwa razy dalsza pozycja daje dwa razy głośniejszy dźwięk), należy stosować potencjometr logarytmiczny.

  29. Natężenie fali emitowanej przez punktowe źródło dżwięku o mocy P i rozchodzącej się w ośrodku izotropowym P1 R1 P2 R2

  30. Tablica oceny warunków akustycznych środowiska (wg PZH)

  31. Dopuszczalne poziomy hałasu w środowisku powodowanego przez poszczególne grupy źródeł hałasu, z wyłączeniem hałasu powodowanego przez starty, lądowania i przeloty statków powietrznych, wyrażone wskaźnikami LDWN i LN, mającymi zastosowanie do prowadzenia długookresowej polityki w zakresie ochrony środowiska przed hałasem Objaśnienia:

  32. Przykład: poziom głośności wzrasta o 5 dB. Ile razy wzrasta natężenie dźwięku?

  33. Zjawisko Dopplera

  34. Gdyby obserwator nie poruszał się to w czasie t rejestrowałby fal.

  35. Jeśli detektor porusza się w kierunku źródła to zarejestruje więcej fal. Częstotliwość słyszana przez obserwatora jest równa liczbie fal odbieranych w jednostce czasu Gdy detektor oddala się od źródła

  36. W przypadku ruchu źródła w kierunku nieruchomego obserwatora obserwujemy skrócenie długości fali. W ciągu okresu T źródło przesuwa się o odległość i o tyle zostaje skrócona każda fala Częstotliwość dźwięku rejestrowanego przez obserwatora wynosi

  37. Gdy źródło oddala się od obserwatora, każda fala jest dłuższa o Częstotliwość dźwięku rejestrowanego przez obserwatora wynosi Ogólnie: znaki górne – źródło i obserwator zbliżają się, dolne – oddalają.

  38. Źródło dźwięku porusza się z prędkością dźwięku Źródło dźwięku porusza się z prędkością większą od prędkości dźwięku szybciej od czoła fali. Czoła fali skupiają się na powierzchni stożkowej zwanej stożkiem Macha tworząc falę uderzeniową liczba Macha

More Related