470 likes | 484 Views
Investigate implications of Large Extra Dimensions (LXD) on black hole production at LHC, addressing the hierarchy problem in physics regarding the weak gravitational force. Horst Stöcker from FIAS and Goethe-Universität Frankfurt explores models like ADD, RS, and UXD to understand gravity's weakness. Learn how LXDs could affect black hole production and probe new physics at LHC.
E N D
Black Holes at LHC ?Horst StöckerFIAS Frankfurt Institute for Advanced Studies 1The Hierarchy-problem and LXD - Large eXtra Dimensions 2 Black Holes in p+p @ LHC: 10^8 p.a. - due to LXDs? 3 Di-Jet Suppression- Signals TeV-BHs: ALICE, ATLAS, CMS 4 Muliple Mono-Jets from Hawking-Evaporating - Signal TeV-BHs 5 Stable charged TeV-BH-Remnants - Observable as TRACK in TPC 6 BH- Production 1000*enhanced in Pb+Pb events @ 5.5 ATeV 7 BH - Black holes ? Hawking => White holes! Horst Stöcker FIAS + Goethe- Universität Frankfurt
Focus 32/1999 Horst Stöcker FIAS + Goethe- Universität Frankfurt
The hierarchy problem “Why is gravity so much weaker than the other forces of nature ? “ • The electroweak scale: MZ,W≈ 100 GeV • The Planck scale: MPlanck≈ 1019 GeV ≈ 10-8 kg • PDG review: “MPlanck is defined to be the energy scale where the gravitational interactions of elementary particles become comparable to gauge interactions” • PDG review: “It is possible that supersymmetry may ultimately explain the origin of this hierarchy.” • Why? Supersymmetry can make the hierarchy stable, while in the Standard Model alone this is not possible. • Today, we’ll look at an alternative, proposed solution to the hierarchy problem, i.e. to why gravity is so weak. Horst Stöcker FIAS + Goethe- Universität Frankfurt
Models withLarge Extra Dimensions LXDd =1, 2,…, 6, 7 ? SUSY: 3+1+7 Dim Main motivation hierarchy problem: Why is gravitation so weak? String theory suggests XDs but it is hard to make predictions • Effective theories with LXDs: • Arkani-Hamed, Dimopoulos & Dvali (ADD) • Randall & Sundrum (RS) • Universal Extra Dimensions (UXD) • Warped and more ... Horst Stöcker FIAS + Goethe- Universität Frankfurt
The ADD model • 3+d space like dimensions • d dimensions on d-torus with radii R • only gravity propagates in all dimensions (bulk) • all other fields propagate only in 4-dim. space time (brane) Our world embedded into d compactified LXD: Horst Stöcker FIAS + Goethe- Universität Frankfurt N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, PLB 429, 263 (1998);
How do they look like? Horst Stöcker FIAS + Goethe- Universität Frankfurt
Now let’s (re)move the hierarchy problem: We’d like MPl≈ MW,Z • Setting MPlank = 1 TeV, one obtains: • Experimentally, it turns out that F ~ 1/r ^2 has only been verified down to distances 1mm(1998), 0.15mm(2002), 0.044 mm(2006) • Therefore, large spatial extra dimensions, compactified at a sub-millimeter scale are, in principle, allowed! • If this is the case, gravity can be ~1038 times stronger than what we think! Horst Stöcker FIAS + Goethe- Universität Frankfurt
LHC Horst Stöcker FIAS + Goethe- Universität Frankfurt
RH proton in D=4: near zero Black Holes in ADD- model, D = 4 + d Dim: number of extra dimensions d=1,2,…,6,7 Schwarzschild radius RH modified! *Myers and Perry, Ann. of Phys. 172 (1986) Landsberg & Giddins: LHC=BH factory BH- Production: 10 nbp-p @LHC ~ 1Hz at full L ~ mbin Pb+Pb The Sun: BH at LHC: RH proton ”large” in d-LXD Horst Stöcker FIAS + Goethe- Universität Frankfurt
A BH B X |A>+|B> => BH + X Large BH-Production Probabilities in ADDLHC - a Black Hole Factory?Landberg & GiddinsPRL 2001 No fundamental scattering operator for Model the black disc cross section: Hoop-conjecture (K.Thorne) Critical impact parameter b = R-horizon Parton model: fold structure function with BH-formfactor Horst Stöcker FIAS + Goethe- Universität Frankfurt
Production probabilities of BH per pp-event: NANOBARN! 1000x increased per central Pb+Pb event: Ncoll=200, b<3fm! Pb+Pb p+p * ** *Bleicher, Hofmann, Hossenfelder, Stoecker ** Hossenfelder Phys.Lett.B598:82-98,2004 Phys.Lett. B548:73-76,2002 Review: H. Stoecker, J. Phys. G: Nucl. Part. Phys. 32(2006)429 Horst Stöcker FIAS + Goethe- Universität Frankfurt
Conical Flow in AdS/CFT v=0.75 v=0.9 Mach cone 2 2 2 2 v=0.95 v=0.99 K┴ K┴ K┴ K┴ 1 1 1 1 0 0 0 0 2 2 2 2 KL KL KL KL 4 4 4 4 (Friess, Gubser, Michalogiorgakis, Pufu hep-th/0607022) String theory study of Heavy Quark motion in strongly coupled N=4 SYM { Herzog et al. Drag JCS & Teaney Gubser = Energy Density Looking at T00 they found the shock waves in N=4 SYM This is a dynamical model. No assumption about hydro- dynamical behavior is made! Horst Stöcker FIAS + Goethe- Universität Frankfurt
LXD-BHs dominate pQCD 10-fold at M ~ 1 TeV ! *Hewett, Lillie, Rizzo: hep-ph/0503178 Horst Stöcker FIAS + Goethe- Universität Frankfurt
Signals of LXD-BHs in early p+p running ! • 1 Suppressed QCD-Di-Jets @ 2pt > M ~ 1TeV • 2 Emission of Multiple Mono-Jets (Hawking Rad.) • => Jet Enhancement for pT > 100 GeV • 3 Stable Black Hole Remnant: • => Charged BH -> single Track in TPC • => neutral BH -> large (TeV) missing energy • => Hawking Monojets @ pT ~ 100 GeV Horst Stöcker FIAS + Goethe- Universität Frankfurt
1 High pT- Di-Jet -Suppression in p+p at LHC: Di-Jets with 2pt ~ M > Mf vanish behind Schwarzschild-Radius High pT ~ Mf suppression in A+B -> Jet (pT)+X => #Jet(pT) << #Jet(pT) in LXDs in D=4 => High pt- physics hidden behind horizon Horst Stöcker FIAS + Goethe- Universität Frankfurt
IF (LXD- Black Holes at 14 TeV in pp@ LHC).THEN. (NO High pT- events, No 2*500GeV Di-Jets@LHC QCD d =7 QCD • LXD-BHs => No Di-Jets w. M=E1+E2 > 1 TeV ALICE can differentiate LXD- BHs from QCD- Background! (see T. Humanic, ALICE Int. Note) Horst Stöcker FIAS + Goethe- Universität Frankfurt
2 Mini - Black Hole evaporates: WHITE HOLES! - emitts very hard multiple Monojets due to microcanonic Hawking- Radiation of SMP + SuSy-Partners into Brane (3+1Dim): S-, C-, B-, T- quarks equally abundant! + Kaluza- Klein Tower excitations (Grav) into BULK (d- Dim) Horst Stöcker FIAS + Goethe- Universität Frankfurt
Evaporation of BHs in D = 4+d Connection between Schwarzschild surface <------> Entropy of a BH Single particle spectrum: *Kraus, Wilczek: Nucl.Phys.B 433 (1995) **Casadio, Harms: MICRO! Phys.Rev. D64 (2001)... Evaporation rate: Lifetime LHC BH: (d=4, Mf=1TeV) Horst Stöcker FIAS + Goethe- Universität Frankfurt
Radiation into the LXDs • Part of Hawking radiation into LXDs • Missing energy lost to our 3-Dim universe • Maybe difficult to find if radiation dominated by gravitons • Black Holes ? • => WHITE Holes Horst Stöcker FIAS + Goethe- Universität Frankfurt
Event Characteristics • For microscopic BHs, t ~ (MBH)3 ~ 10-27 s, decays are essentially instantaneous • TH ~ 1/MBH ~ 100 GeV, so not just photons: q,g : l : g : n,G = 75 : 15 : 2 : 8 • Multiplicity ~ 10 • Spherical events with leptons, many quark and gluon jets De Roeck (2002) Horst Stöcker FIAS + Goethe- Universität Frankfurt
pT > 100 GeV Hawking-Jet crosssection >> QCD Jet X-section! * (@14TeV) ** * Hossenfelder, Hofmann, Bleicher, Stöcker: Phys.Rev.D66:101502,2002 **Lönnblad, Sjödahl: hep-ph/0505181 Horst Stöcker FIAS + Goethe- Universität Frankfurt
Simulated Decaying Black Hole event - ATLAS detector Courtesy Laurent Vacavant Horst Stöcker FIAS + Goethe- Universität Frankfurt
What would a mini-black hole produced at LHC look like? • Decay process • Mini black holes produced at LHC would be light & tiny, compared to cosmic black holes. (~TeV versus >3 Solar masses) • As a result, they would be extremely hot (T~100 GeV) and evaporate almost instantaneously, mainly via Hawking radiation. • Democratic production: Hawking radiation produces particle/antiparticle pairs for all degrees of freedom accessible around ~ 100 GeV, at roughly equal rates. • An Alternative: Einstein- Gauss- Bonnet string gravity-/Lovelock Terms: Stable Black Hole Remnants possible, M ~ 1 TeV! • Decay Signature • Average of ~ 5-10 Monojets (of ~ 100 GeV) for each decay, emitted spherically • ~120 Particle degrees of freedom ~ 1% chance for each. • Summing over spin and color gives: • 75 % quarks and gluons -> Jets • 10 % charged high pt leptons -> Trigger • 5 % neutrinos : missing energy • 5 % photons or W/Z bosons • Also get new particles around 100 GeV, including light highs (1% ?) • Small fraction of invisible neutrinos and gravitons BH’s easy reconstructed Courtesy: Sven Vahsen Horst Stöcker FIAS + Goethe- Universität Frankfurt
3 Stable BH-Remnant - left after Evaporation? GUP & QG motivation for BH-Remnants: M. Maziashvili Phys. Lett. B635 (2006) 232 R. Adler, P. Chen, D Santiago, Gen. Rel. Grav. 33 (2001) 2101-2108 BH-Remnants in Einstein-Gauss-Bonnet string gravity: S. Alexejev et al, Class.Quant.Grav. 19 (2002) 4431 BH-Remnants from Stringy corr. Einst.-Hilbert action, Lovelock higher-order curvature: T. Rizzo, JHEP 0506 (2005) AdS/CFTand BH-Remnantss: R. Casadio, hep-ph/0304099 motivates evaporation rate: Stable Black Hole -Remnants BHR ? Horst Stöcker FIAS + Goethe- Universität Frankfurt
Black Hole Remnants from Large Extra Dimensions?Sabine Hossenfelder, M. Bleicher, S. Hofmann, Horst Stöcker, Ashutosh Kotwal Phys.Lett.B566(2003)233 BHR Horst Stöcker FIAS + Goethe- Universität Frankfurt
BH-Remnants: largeincrease of Jets at medium pT ~ 100 GeVwhile high pt Jets are quenched: BH-restmass! Large Increase Quench Koch, Hossenfelder, Bleicher: JHEP 10 (2005) 053 Horst Stöcker FIAS + Goethe- Universität Frankfurt
M-C Hawking-Evaporation Even if Remnant eats: WHITE! BHR = 1 stiff Track in ALICE – TPC (T.Humanic) Plus One recoil Monojet (small M_init) or several monojets (Hi M_init) NOT back-to-back correlated! Hard Mono-Jets Emitted . . . . . . . . . . Numerical Simulation Koch, Hossenfelder, Bleicher: JHEP 10 (2005) 053 See also Hossenfelder, Bleicher, Hofmann, Stoecker, Ashutosh, Kotwal Phys. Lett. B566, 233-239 (2003) T. Humanic, B.Koch, H.Stoecker, IJMPE, accepted for publication BHR Horst Stöcker FIAS + Goethe- Universität Frankfurt
„Recoil BH-Remnant“ in ATLAS @ LHC • Cosmic Horst Stöcker FIAS + Goethe- Universität Frankfurt
Conclusions: • Large Extra dimensions LXD provide an alternative to SUSY in addressing thehierarchy problem • If LXD realized in nature, gravity may be stronger than we think • In that case, actual Planck scale may be within reach of the LHC • Black hole production could be abundant, and we could see somethingearly on at LHC... namely • => WHITE holes! • Black? = white hole production would dominate high pt at LHC... “The end of short distance physics” • BH production would provide an unexpected window into geometry of spacetime, as well as a new production process for other undiscovered particles Horst Stöcker FIAS + Goethe- Universität Frankfurt
Thank You ! Marcus Bleicher ITP, Goethe- Univ. Frankfurt Uli Harbach FIAS Ben Koch FIAS Stefan Scherer FIAS Tom Humanic Ohio State Univ. Stefan Hofmann now: Perimeter Institute, Waterloo Sabine Hossenfelder now: UC Santa Barbara Kerstin Paech now: NSCL, MSU, East Lansing Horst Stöcker FIAS + Goethe- Universität Frankfurt
T~1 TeV: Kapusta-Hawking-Plasma • Extreme Hawking energy density in p+p! • Multiple hard Jets with hundreds of GeV each! • Heavy Quark Jets in „Kapusta-Hawking Plasma“? • Thermalization? VISCOSITY! • Formation of HOT plasma? • T > 100 GeV: 1000 * Tcrit-QCD, T>Telectroweak P.T. • Hydrodynamic Detonation? Viscous Blast Wave? • -> „Soft“, Thermal emission rates of • Strange, Charm, Bottom, Truth abundant! • Electroweak-, Higgs- and SUSY particles! Horst Stöcker FIAS + Goethe- Universität Frankfurt
Focus 32/1999 Horst Stöcker FIAS + Goethe- Universität Frankfurt
Di-Jet Suppression and Multi-Mono-Jet Emission – Signal of QGP or LXD- Black Holes at LHC Horst Stöcker, FIAS Frankfurt Institute for Advanced Studies 1LXD: TeV-BHs in p+p @ LHC - 10^8 p.a. ?! 2 Di- Jet suppression- Signal LXD-BHs @ LHC: ALICE, ATLAS, CMS 3 Muliple Monojets from Hawking-Evaporating signal TeV-BHs! Need EM-Cal for better ~ 100 GeV reach in pt 4 Stable TeV-Remnant-BHs? Observe them in TPC? 5 BH- Production 1000*enhanced in Pb+Pb @ 5.5 ATeV 6 TeV-BHs explode in QCD-plasma? Horst Stöcker FIAS + Goethe- Universität Frankfurt
Genfer Mini- Monster Horst Stöcker FIAS + Goethe- Universität Frankfurt
Black Holes in 3+1 Dim: Karl Schwarzschild Born: 9 Oct 1873 in Frankfurt am Main 1915 solves Einstein‘s General Relativity, Predicts Black Holes Schwarzschild- Metric Schwarzschild- Radius: RS = Horizon-Radius RH Schwarzschild-Singularity: R -> 0 Horst Stöcker FIAS + Goethe- Universität Frankfurt
RH LXD in microcosmos: Black Holes in D = 4+d LXD in macrocosmos: Topology of the horizon: Topology of the horizon: Horst Stöcker FIAS + Goethe- Universität Frankfurt
Jet event in e+e-collision ALICE P+P: no-di-jet events! Hard Scattering: NO Di-Jets, but BHs ! STAR p + p jet event See Multi-Mono-Jets in LHC energy p+p & Au+Au ? Horst Stöcker FIAS + Goethe- Universität Frankfurt
3. Thermalization of Multiple Mono-Jets? Kapusta-Hawking- Plasma in p+p@LHC! Horst Stöcker FIAS + Goethe- Universität Frankfurt
Hawking Evaporation of BHs in D = 3+1= 4 Evaporation rate: Sun: Lifetime: LHC: Horst Stöcker FIAS + Goethe- Universität Frankfurt
Naїvely, black holes would only grow once they are formed In 1975 Steven Hawking showed that this is not true, as the black hole can evaporate by emitting pairs of virtual photons at the event horizon, with one of the pair escaping the BH gravity These photons have a black-body spectrum (Planck) with the Hawking temperature: The smallest black holes are the hottest! Usual Stefan-Boltzmann blackbody formula givess the Luminosity: L~TH4 The smallest are also the brightest! If the Hawkings Temperature is high enough, then particle/ antiparticle pairs (other than two photons) are created as well, and the black hole luminosity increases. Total luminosity directly proportionally to the degrees of freedom available. Black Hole Evolution Horst Stöcker FIAS + Goethe- Universität Frankfurt
HAWKING: BUT LXD-BH‘s: Horst Stöcker FIAS + Goethe- Universität Frankfurt
Large Extra Dimensions LXD d =1, 2,…, 6, 7? SUSY=3+1+7 Dim Our world embedded into d compactified LXD: R>>lPl Boundary Conditions in compactified d- Dim: *Donli et al., PLB 429 (1998) 263 Horst Stöcker FIAS + Goethe- Universität Frankfurt