420 likes | 533 Views
Tendencias modernas de diseño electrónico para audio. Alejandro Silva 2013 Ingeniero de Ejecución en Sonido. Lee De Forest. 1500x1600 pixeles. Peter L. Jensen. 87x70 pixeles. William Shockley. 25x35 pixeles. Fotografía de 25x35 pixeles. Fotografía de 700x600 pixeles.
E N D
Tendencias modernas de diseño electrónico para audio. Alejandro Silva 2013 Ingeniero de Ejecución en Sonido
Lee De Forest 1500x1600 pixeles
Peter L. Jensen 87x70 pixeles
William Shockley 25x35 pixeles
Fotografía de 25x35 pixeles. • Fotografía de 700x600 pixeles. 875 pixeles versus 420.000 pixeles, esto es una diferencia en resolución de 54dB.
Oído humano • Son 1.8732x10^23 colisiones de moléculas de aire con el tímpano en 1 segundo. • En 50µseg (período de una frecuencia de 20KHz) hay 9.365x10^18 colisiones. • Si esto fuera un sistema digital por cada ciclo habrían 450x10^12 muestras. • Si cada partícula colisionante fuera un bit la resolución del sistema sería de 63 bits. Esto equivale a un rango dinámico de 379dB.
Comparaciones de resolución • La razón de densidades entre gases y metales (conductores) es de aproximadamente 6 veces. • La razón volumétrica molar entre metales y gases es del orden de 3400 veces. • Una perturbación en el aire de una pieza de 20 metros cúbicos puede representarse sin pérdida de resolución por 5.8 centímetros cúbicos de cobre (1.8x1.8x1.8cm). • Una cápsula magnética de guitarra tiene una bobina con 5.67x10^23 electrones libres (asumiendo AWG42 y 10KΩ). De éstos unos 3.1x10^21 participan en la conducción.
Efectos de antaño • Nivel de integración bajo • Componentes reactivos grandes • Semiconductores e integrados de primera o segunda generación
Efectos de antaño • Construcción punto a punto o con tarjeta de sujeción. • Controles, entradas y salidas cableadas.
Tecnología SMD • Nivel de integración muy alto. • Componentes resisitivos y reactivos diminutos.
Tecnología SMD • Trazas de cobre extremadamente delgadas.
Tecnología SMD • Integrados de última generación (tecnología de 25µm)
Comparación entre un efecto moderno y uno vintage • Efectos idénticos exceptuando los condensadores plásticos y semiconductores. • El efecto antiguo cuesta entre 1.5 y 3 veces más caro que el moderno. • Hay entre 5 y 16 veces más oferta del moderno.
Clase D • Permite una eficiencia eléctrica sobre el 90%. • Esto reduce no solo el costo, si no también el peso.
Clase D • Un amplificador stereo de 50 watts cuesta en promedio USD 88.
Clase D • El único componente crucial es el inductor de salida.
Clase A Solid State • Líder indiscutido en calidad de sonido del estado sólido. • Tienen las mejores especificaciones de ruido, damping y THD.
Clase A Solid State • Necesitan grandes disipadores. • Su ineficiencia los hace muy pesados.
Clase A Solid State • Un amplificador stereo de 50 watts cuesta en promedio USD 12500.
Clase A Tubos • Single Ended Triode
Clase A Tubos • Generalmente son monoblocks y usan un tríodo de potencia único. • Son circuitalmente muy simples. • La potencia de salida es pequeña.
Clase A Tubos • El transformador de salida es desproporcionadamente grande para lograr eficiencia en baja frecuencia.
Clase A Tubos • Escuchar música através de un amplificador S.E.T. es considerado por expertos como una experiencia mística.
Rango dinámico (metal film) • 220KΩ 2W Vruido=9.54µV Vmax=663V 20log(Vmax/Vruido)=157dB • 220KΩ 0.25W Vruido=11.04µV Vmax=235V 20log(Vmax/Vruido)=147dB
Rango dinámico (carbon film) • 220KΩ 2W Vruido=10.54µV Vmax=663V 20log(Vmax/Vruido)=156dB • 220KΩ 0.25W Vruido=16.04µV Vmax=235V 20log(Vmax/Vruido)=143dB
Rango dinámico (Thin Film SMD) • 220KΩ 0805 0.25W Vruido=9.54µV Vmax=200V 20log(Vmax/Vruido)=146dB
Rango dinámico (wirewound) • 220KΩ 5W Vruido=8.54µV Vmax=1049V 20log(Vmax/Vruido)=162dB
Rango dinámico (trazas de cobre) • Largo=1cm • Ancho=1mm • Grosor=35µm • R=4.43mΩ • Imax=0.35A • Vmax=1.55mV • Vruido=1.21nV • 20log(Vmax/Vruido)=122dB
Rango dinámico (trazas de cobre) • Rango dinámico de una traza de cobre es en definitiva ≈217+10logV ,siendo V el volumen de Cu.
Rango dinámico (cables de cobre) • Cable de 24 hebras de ø0.2mm. • 0.75 mm cuadrados de sección. • L=15cm • R=3.9mΩ • Imax=7A • Vmax=27.3mV • Vruido=1.14nV • 20log(Vmax/Vruido)=148dB
Resolución del estado sólido • Un transistor de salida tiene actualmente un área de aproximadamente 30mm cuadrados (tecnología de 150µm). • La cantidad mínima de transistores necesarios para 50Watts en clase AB es de 2. • En consecuencia el número de partículas que llevan la información es del orden de 9x10^14.
Resolución del estado sólido Transistor de potencia moderno Transistor de potencia antiguo
Resolución del S.E.T. • EL transfomador de salida de un SET de 50Watts puede tener 1Kg de alambre de Cu y un núcleo de 5Kg de fierro. • Solo la bobina contiene aproximadamente 3x10^22 partículas que llevan información. • Esto es una resolución 150dB (3.2x10^6) mayor que un equipo con 2 transistores de salida.
Tubos • El telefunken 12AX7 es un tubo NOS popular. • La producción paró en la década del 80. • Su valor comercial es en promedio USD 100, 20 veces más que la alternativa china o sovietica nueva.
Tubos • El 300B es un tríodo de bajo mu capaz de entregar una potencia de 15 Watts. • Su valor fluctúa entre USD 50 y USD 1200 (2400%). • Tiene una de las mayores áreas de emisión en el cátodo.
Conclusiones • Las tendencias modernas asociadas a la industria digital no deben influenciar el diseño electrónico para audio de alta calidad. • No existe un motivo audible para la miniaturización extrema. • Se puede diseñar y fabricar electrónica de alta resolución de manera barata. • Maximizar el número de partículas que llevan información es la clave. • La forma de mejorar el sonido de un diseño es reforzar el eslabón débil (de menor resolución) en la cadena de señal.