1 / 40

Enseñanza de la matemática en el primer ciclo de básica basado en el modelo japonés

Enseñanza de la matemática en el primer ciclo de básica basado en el modelo japonés . PUNTOS IMPORTANTES TOMADOS EN CUENTA EN ESTE MODELO DE ENSEÑANZA. Presentado por : Octavio Galán C. ocespede02@gmail.com/ocespede02@hotmail.com Genaro Viñas

miyo
Download Presentation

Enseñanza de la matemática en el primer ciclo de básica basado en el modelo japonés

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Enseñanza de la matemática en el primer ciclo de básica basado en el modelo japonés PUNTOS IMPORTANTES TOMADOS EN CUENTA EN ESTE MODELO DE ENSEÑANZA Presentado por : Octavio Galán C. ocespede02@gmail.com/ocespede02@hotmail.com Genaro Viñas genarovinas @gmail.com vigemar24@hotmail.com

  2. Puntos importantes • Las 3 etapas en la enseñanza de la matemática y uso de materiales didácticos • Significados de las operaciones. • Orden de enseñanza. • Metodología de enseñanza. • Permitir que los niños sean el centro de la clase y que se equivoquen. • Construcción de su propio aprendizaje a partir de los conocimientos ya aprendidos • El juego una estrategia para el aprendizaje • Razonamiento matemático.

  3. Las 3 etapas de la matemática Etapa concreta Etapa semi-concreta Etapa abstracta 1 1

  4. La suma: situaciones y significados Manuel tiene 7 naranjas y Pablo tiene 8 naranjas. ¿Cuántos naranjas tienen en total? P.O. 7 + 8 = 15 Resp.: 15 naranjas Manuel tenía 7 naranjas y Pablo le regaló 8 naranjas más. ¿Cuántas naranjas tiene Manuel ahora? P.O. 7+ 8 = 15 Resp.:15 naranjas Manuel tiene 7 naranjas, Pablo tiene 8 naranjas más que Manuel. ¿Cuántas naranjas tiene Pablo? P.O. 7 + 8 = 15 Resp.: 15 naranjas

  5. La suma: situaciones y significados (1)Juntar dos cantidades simultáneamente existentes y obtener la cantidad resultante. (agrupación) María tiene 3 guineos, Raúl tiene 2 guineos. ¿Cuántos guineos tienen en total?

  6. La suma: situaciones y significados 2)Agregar una cantidad a otra que ya existe y obtener la cantidad resultante. (Agregación) Habían 5 patos nadando en el lago. Luego llegaron 3 patos más. ¿Cuántos patos hay en total en el lago?

  7. La suma: situaciones y significados (3)De un número o un número ordinal existente, obtener un cierto número o número ordinal después. (Suma de números ordinales) Luis está en el 5to piso de un edificio. ¿En qué piso estará si sube 10 pisos más?

  8. La suma: situaciones y significados (4)Cuando existe dos cambios en la misma dirección, obtener la cantidad total del cambio. Juan vende naranjas durante 3 dias. El Segundo dia vendiò 8 naranjas menos que el primer dia, y en el tercer, dia vende 6naranjas menos que en el segundo. ¿Cuántas naranjas menos vende el tercer dia en comparación con el primero?

  9. La suma: situaciones y significados (5)Existen dos cantidades; obtener el número más grande con base en el número más pequeño Ana tiene 12 dulces, Jorge tiene 5 dulces más que Ana. ¿Cuántos dulces tiene Jorge ?

  10. La resta: situaciones y significados Luis tiene 15naranjas si vende 8 naranjas. ¿Cuántas naranjas le quedan? P.O. 15 - 8 = 7 Resp.: 7naranjas Luis tiene 15naranjas y Carlos tiene 8naranjas. ¿Cuántas naranjas tiene Luis más que Carlos P.O. 15 - 8 = 7 Resp.: 7naranjas Luis tiene 15naranjas y Carlos tiene 8naranjas. ¿Cuántas naranjas le faltan a Carlos para tener igual que Luis P.O. 15 - 8 = 7 Resp.: 7naranjas

  11. La resta: situaciones y significados (1) Obtener la diferencia entre dos cantidades Hay 12 niños y 8 niñas. ¿ Cuántos niños hay más niñas?

  12. La resta: situaciones y significados (2) De una cantidad inicial, obtener lo que queda de una reducción. (Calcular el sobrante, quitar) Tengo 7 manzanas, si me como 4 manzanas, ¿cuántas me quedan?

  13. La resta: situaciones y significados (3) Obtener la cantidad que faltan para llegar a la cantidad necesaria. (Complemento) Para comprar un libro necesito 1650 pesos, pero sólo tengo 950 pesos. ¿Cuántos pesos más necesito para comprar el libro?

  14. La resta: situaciones y significados • (4)De un número o un número ordinal existente, obtener un cierto número o número ordinal anterior. Obtener la diferencia entre dos números ordinales. (Resta de números ordinales) Luis está en el dècimo cuarto piso de un edificio y llega hasta el 5to piso. ¿Cuántos pisos bajó Luis?

  15. La resta: situaciones y significados (5) De una cantidad mayor, obtener una candiad menor con base en la diferencia. (Calcular la cantidad más pequeña) Laura tiene 12 años, Dany tiene 4 menos que Laura. ¿Cuántos años tiene Dany?

  16. La multiplicación: situaciones y significados

  17. La multiplicación: situaciones y significados 4 x 3 ó 3 x 4 3 + 3 + 3 + 3 4 veces 3 (Cantidad de grupos) x (cantidad en cada grupo)

  18. La división: situaciones y significados • Se reparten 12 dulces para 4 personas por igual, ¿cuántos dulces tocará cada una? 12 ÷ 4 = 3 3 dulces

  19. La división: situaciones y significados Se reparten 12 dulces, 4 para cada persona, ¿cuántas personas tocarán dulces? 3 personas 12 ÷ 4 = 3

  20. ÷ = (Cantidad Total) (Cantidad de medida) (Cantidad medida) (Cantidad de grupos) (Cantidad de cada grupo) ÷ = (Cantidad Total) (Cantidad medida) (Cantidad de medida) (Cantidad de cada grupo) (Cantidad de grupos) La división: situaciones y significados = x • Cantidad de medidas) (Cantidad medida) (Cantidad total) (Cantidad de grupos) (Cantidad en cada grupo)

  21. La división: situaciones y significados • Hay 25 libras de arroz. Si se reparten equitativamente en 4 fundas, ¿qué cantidad de arroz tendrá cada funda? 25 ÷ 4 = 6.25 = = 6 y sobra 1 R:6.25 libras Hay 25 libras de arroz, ¿cuántas fundas se pueden llenar de arroz si cada una coge 4 libras? 25 ÷ 4 = 6.25 = = 6 y sobra 1 R:6 fundas Hay 25 libras de arroz si se echa en fundas que cogen 4 libras, ¿cuántas fundas se necesitan para echar todo el arroz? 25 ÷ 4 = 6.25 = = 6 y sobra 1 R:7 fundas

  22. Tabla de Sumar

  23. Tabla de Sumar

  24. Tabla de restar

  25. Tabla de restar

  26. Permitir que los niños sean el centro de la clase y que se equivoquen

  27. Estrategia para trabajar la respuesta herrada de los niños • Determinar el área y el perímetro de las figuras de más abajo.

  28. Construcción de su propio aprendizaje a partir de los conocimientos previos. • Encontrar la fórmula del área del triángulo a partir del área del rectángulo.

  29. El juego una estrategia para el aprendizaje • El juego del 22. • Este juego se juega entre dos personas. Cada uno puede elegir un número entre 1 y 5,incluido el 1 y el 5. • El que empieza primero dice su número, inmediatamente el otro jugador dice su número y se lo suma al anterior del otro jugador y continúan así hasta que un jugador diga 22 y este es el ganador

  30. Vamos a razonar Resuelva el siguiente problema aplicando únicamente las operaciones básicas (suma, resta, multiplicación y división) 2 manzanas y una naranja cuestan 29 pesos 1 manzana y 2 naranjas cuestan 22 pesos. ¿Cuánto cuesta cada manzana y cada naranja? = 29 = 22

  31. = 29 = 29 – 17 = 12 = 22 = 22 – 17 = 5 = 51 51 ÷ 3 = 17

  32. n x n = n 2 (n-1) (n+1) = n -1 2 2 (n-2) (n+2) = n -2 2 2 . . . 2 (n-a) (n+a) = n -a 2 20 x 20 = 400 19 x 21 = 399 • 2 18 x 22 = 396 17 x 23 = 391 384 16 x 24 = 15 x 25 = 375 14 x 26 = 364 11 x 29 = 319

  33. Halle el área del cuadrado inscrito en la circunferencia

  34. 4 cm 4 cm 2 A= 64cm - 4 (bh ÷ 2) 2 2 A= 64 cm - 4 x {(4cm x 4cm) ÷ 2} = 32 cm

  35. Halle el área del cuadrado inscrito en la circunferencia

  36. h = 5 cm b=10cm 2 A= 2 x {(10 cm x 5 cm) ÷ 2} = 50 cm A= 2 (bh ÷ 2)

  37. h = 5 cm b=10cm 2 A= 10 cm x 5 cm = 50 cm A= bh

  38. Muchas gracias Muchasgracias

More Related