1 / 24

Simon Algorithm

Simon Algorithm. String matching algorithms and automata SIMON I. 1st American Workshop on String Processing, pp 151-157(1993). Advisor: Prof. R. C. T. Lee Speaker: C. W. Lu. String matching problem Given a text string T of length n and a pattern string P of length m .

mohawk
Download Presentation

Simon Algorithm

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Simon Algorithm String matching algorithms and automata SIMON I. 1st American Workshop on String Processing, pp 151-157(1993) Advisor: Prof. R. C. T. Lee Speaker: C. W. Lu

  2. String matching problem • Given a text string T of length n and a pattern string P of length m. • Find all occurrences of P in T. • Simon algorithm is an algorithm which solves the string matching problem. • Skip the pattern by using Rule 2.

  3. z≠x • In KMP algorithm, they use a Prefix Function to determine the window shifting. Case 1: T: P: Find Move Case 2: T: Move No such u where z≠x.

  4. z = y • Simon algorithm improves KMP algorithm by using a better function. Case 1: T: P: Find Move Case 2: T: Move No such u where z= y.

  5. Example: T : P : ∵The string P(5,8)= ATCAis the longest suffix of ATCACATCAwhich isequal to a prefix of P, namely P(0,3), and P(4) = T(9), that is T(5,9)= P(0,4). Therefore, we can slide the window to align P(4)with T(9). T : P :

  6. Example: T : P : ∵ There is no suffix of ATCACATCAA which isequal to a prefix of P. Therefore, we slide the window to align P(0)with T(9). T : P : In this case, Simon algorithm is batter than KMP algorithm because KMP algorithm would align P(0) with T(5).

  7. Simon Table • Let . • Let u be longest suffix of (P(0, i-1) + y) which is equal to a prefix of P, where y≠ P(i). SimonTable (i, y, |u|) T u P u

  8. Note that, in the Simon Algorithm, when a mismatch occurs at location i, and if (i, y, |u|)SimonTable, we could move P by (i-|u|+1) steps, otherwise, move P by i+1 steps.

  9. The Simon Table can be constructed recursively by using the table which is used in MP algorithm, called Prefix Table.

  10. The Simon Table for ( i=1 ; i<=m ; i++ ) { t = prefix (i-1) while ( t > 0 ) { if ( P(i) ≠P(t) & (i, P(t), *) SimonTable) SimonTable (i, P(t), t+1); end if else t = prefix ( t – 1 ); /*recursive*/ end while if( t = 0 & P(i) ≠P(t) & (i, P(t), *) SimonTable) SimonTable (i, P(t), 1); end if end for

  11. 4 2 6 7 1 0 1 3 5 1 2 3 4 0 0 0 C B C B A B B A Example i P Prefix i = 1. t = prefix(1-1) = prefix(0) = 0. P(1) ≠P(t)= P(0) & (1, P(t), *) SimonTable SimonTable (1, B, 1). SimonTable : {(1, B, 1)}

  12. 4 2 6 7 1 0 1 3 5 1 2 3 4 0 0 0 C B C B A B B A Example i P Prefix i = 2. t = prefix(2-1) = prefix(1) = 0. P(2) = P(t) = P(0) = B SimonTable : {(1, B, 1)}

  13. 5 6 7 2 4 3 1 2 1 4 0 0 1 0 0 3 C B C B B A B A i P Prefix i = 3. t = prefix(3-1) = prefix(2) = 1. P(3) ≠P(t)= P(1) & (3, C, *) SimonTable SimonTable (3, C, t+1) = (3, C, 2). t = prefix(t-1) = prefix(0) = 0 P(3) ≠P(0) & (3, B, *) SimonTable SimonTable (3, B, 1). SimonTable: {(1, B, 1), (3, C, 2), (3, B, 1)}

  14. 5 6 7 2 4 3 1 2 1 4 0 0 1 0 0 3 C B C B B A B A i P Prefix i = 4. t = prefix(4-1) = prefix(3) = 0. P(4) = P(t) = P(0) = B SimonTable : {(1, B, 1), (3, C, 2), (3, B, 1)}

  15. 5 6 7 2 4 3 1 2 1 4 0 0 1 0 0 3 C B C B B A B A i P Prefix i = 5. t = prefix(5-1) = prefix(4) = 1. P(5) = P(t)= P(1) = C t = prefix(t-1) = prefix(0) = 0 P(5) ≠ P(0) & (5, B, *) SimonTable SimonTable (5, B, 1). SimonTable: {(1, B, 1), (3, C, 2), (3, B, 1), (5, B, 1)}

  16. 5 6 7 2 4 3 1 2 1 4 0 0 1 0 0 3 C B C B B A B A i P Prefix i = 6. t = prefix(6-1) = prefix(5) = 2. P(6) = P(t)= P(2) = B. t = prefix(t-1) = prefix(1) = 0. P(6) =P(0) = B. SimonTable: {(1, B, 1), (3, C, 2), (3, B, 1), (5, B, 1)}

  17. 5 6 7 2 4 3 1 2 1 4 0 0 1 0 0 3 C B C B B A B A i i = 7. t = prefix(7-1) = prefix(6) = 3. P(7) = P(t)= P(3) = A. t = prefix(t-1) = prefix(2) = 1. P(7) ≠ P(t) = P(1) & (7, C, *) SimonTable SimonTable (7, C, t+1) = (7, C, 2). t = prefix(t-1) = prefix(0) = 0. P(7) ≠ P(0) & (7, B, *) SimonTable SimonTable (7, B, 1). SimonTable: {(1, B, 1), (3, C, 2), (3, B, 1), (5, B, 1), (7, C, 2), (7, B, 1)} P Prefix

  18. 5 3 1 6 7 8 4 1 2 3 4 0 0 1 0 0 2 A B C B C B B A i P Prefix i = 8. t = prefix(8-1) = prefix(7) = 4. P(8) ≠P(t) = P(4) & (8, B, *) SimonTable. SimonTable (8, B, t+1) = (8, B, 5). t = prefix(t-1) = prefix(3) = 0. P(8) ≠ P(0), but (8, B, *) SimonTable SimonTable: {(1, B, 1), (3, C, 2), (3, B, 1), (5, B, 1), (7, C, 2), (7, B, 1), (8, B, 5)}

  19. B B B C B D B A C A B A B D B C … C B C B A B C B A B B A B C B SimonTable: {(1, B, 1), (3, C, 2), (3, B, 1), (5, B, 1), (7, C, 2), (7, B, 1), (8, B, 5)} • Example: T : P : ∵ P(3)≠T(3) = C, and (3, C, 2)SimonTable. ∴ Move P by (3-2+1) = 2 steps

  20. B A B B D B C B C B C C B A B B A B C B A B C B A C B A B C … B SimonTable: {(1, B, 1), (3, C, 2), (3, B, 1), (5, B, 1), (7, C, 2), (7, B, 1), (8, B, 5)} • Example: T : P : ∵ P(3)≠T(5) = D, and (3, D, *)SimonTable. ∴ Move P by 4 steps

  21. B B C B D B C B C B C C B A B B A B B A B C B … A C B A B C A B SimonTable: {(1, B, 1), (3, C, 2), (3, B, 1), (5, B, 1), (7, C, 2), (7, B, 1), (8, B, 5)} • Example: T : P : ∵ P(0, 7)=T(6, 13), and (8, B, 5)SimonTable. ∴ Move P by (8-5+1) = 4 steps.

  22. Preprocessing phase in O(m) time and space complexity. • Searching phase in O(m+n) time complexity.

  23. References • BEAUQUIER, D., BERSTEL, J., CHRÉTIENNE, P., 1992, Éléments d'algorithmique, Chapter 10, pp 337-377, Masson, Paris. • CROCHEMORE, M., 1997. Off-line serial exact string searching, in Pattern Matching Algorithms, ed. A. Apostolico and Z. Galil, Chapter 1, pp 1-53, Oxford University Press. • CROCHEMORE, M., HANCART, C., 1997. Automata for Matching Patterns, in Handbook of Formal Languages, Volume 2, Linear Modeling: Background and Application, G. Rozenberg and A. Salomaa ed., Chapter 9, pp 399-462, Springer-Verlag, Berlin. • CROCHEMORE, M., RYTTER, W., 1994, Text Algorithms, Oxford University Press. • HANCART, C., 1992, Une analyse en moyenne de l'algorithme de Morris et Pratt et de ses raffinements, in Théorie des Automates et Applications, Actes des 2e Journées Franco-Belges, D. Krob ed., Rouen, France, 1991, PUR 176, Rouen, France, 99-110. • HANCART, C., 1993, On Simon's string searching algorithm, Inf. Process. Lett. 47(2):95-99. • HANCART, C., 1993. Analyse exacte et en moyenne d'algorithmes de recherche d'un motif dans un texte, Ph. D. Thesis, University Paris 7, France. • SIMON I., 1993, String matching algorithms and automata, in in Proceedings of 1st American Workshop on String Processing, R.A. Baeza-Yates and N. Ziviani ed., pp 151-157, Universidade Federal de Minas Gerais, Brazil. • SIMON, I., 1994, String matching algorithms and automata, in Results and Trends in Theoretical Computer Science, Graz, Austria, Karhumäki, Maurer and Rozenberg ed., pp 386-395, Lecture Notes in Computer Science 814, Springer Verlag.

  24. Thank you!

More Related