290 likes | 314 Views
The nature of the fore arc mantle and implications for seismic anisotropy. Peter van Keken University of Michigan With: Erik Kneller, Shun Karato, Ikuo Katayama, Maureen Long, Geoff Abers, Ellen Syracuse Sponsored by the National Science Foundation. Fore arc mantle: high Q low T
E N D
The nature of the fore arc mantle and implications for seismic anisotropy Peter van Keken University of Michigan With: Erik Kneller, Shun Karato, Ikuo Katayama, Maureen Long, Geoff Abers, Ellen Syracuse Sponsored by the National Science Foundation
Fore arc mantle: high Q low T hydrated trench-parallel S-wave splitting Shear wave splitting: B-type fabric partly explains patterns for Honshu, Ryukyu 3D flow likely for Marianas, Central Andes Not clear: Cascadia, Costa Rica - Nicaragua Van Keken, EPSL, 2003
Fore arc mantle: high Q low T hydrated trench-parallel S-wave splitting Shear wave splitting: B-type fabric partly explains patterns for Honshu, Ryukyu 3D flow likely for Marianas, Central Andes Not clear: Cascadia, Costa Rica - Nicaragua Van Keken, EPSL, 2003
Cascadia (Hyndman & Peacock EPSL 2003) Honshu (Yamano et al., 1997, cited in Yoshimoto, BSSA, 2006)
Cascadia (Hyndman & Peacock EPSL 2003) Honshu (Yamano et al., 1997, cited in Yoshimoto, BSSA, 2006)
Cascadia S perturbation (%) Bostock et al., Nature, 2002
Cascadia S perturbation (%) Bostock et al., Nature, 2002
Stachnik et al., 2004 Nakajima, GLR, 2003
Nicaragua Rychert et al., in prep. 1.70 Syracuse et al., in prep. Marianas: Pozgay, Wiens et al. (this meeting)
teleseismic Long and van der Hilst, PEPI, 2005
Hypotheses for formation of trench parallel anisotropy Melt related anisotropy
Test seismic expression of B-type cold corner for Ryukyu Kneller, Long, van Keken, in revision, EPSL
teleseismic Local Kneller, Long, van Keken, in revision, EPSL
teleseismic Local Kneller, Long, van Keken, in revision, EPSL
B-type works well for local S Teleseismic amplitudes too low in models Kneller, Long, van Keken, in revision, EPSL
Andes Marianas SKS arc Anderson, 2004 & in press Pozgay et al.,GJI 2007. trench back arc local
Hypotheses • 3D Flow Mechanisms • Buoyancy driven flow: crustal foundering, melt/water weakening and small scale convection (Behn et al., Science, 2007) • Slab edge effects (Buttles and Olsen, 1998; Kincaid and Griffiths, 2003) • 3D slab rollback and complex return flow (Anderson et al., 2004) • 3D Slab geometry (Hall et al., 2000): variable slab dip, curved trenches or slabs
Variable Slab Dip: Transition to flat slab subduction (Andes) 500 km Trench 13º Full Coupling at 80 km 300 km 30º Slab Contours (50 km) Kneller and van Keken, Nature, in press
Rheology and Finite Element Mesh 10-15 km resolution 2-3 km resolution Kneller and van Keken, Nature, in press
Trench-parallel velocity: ux(cm/yr) Inflow channel with trench-parallel velocity component Magnitude is strongly dependent on rheology Kneller and van Keken, Nature, in press Particle stream lines
Trench-parallel orientation of maximum stretch SKS, Anderson et al., 2004 800 km 17º z = -50 km 10º 500 km ~ 500 km 30º 30º z = -75 km 10º z = -100 km ~ 500 km 30º Kneller and van Keken, Nature, in press Local S, Anderson et al., in press
Kneller and van Keken, Nature, in press Contours from Syracuse & Abers, G3, 2006. Splitting from Pozgay et al., GJI, 2007
Curved Trench (Marianas) 900 km 1500 km 400 km 60º 300 km Trench Slab Contours (50 km) Kneller and van Keken,Nature, in press
Maximum stretch directions 400 km 500 km Splitting: Pozgay et al., GJI, 2007 Contours: Syracuse and Abers, 2006
Fore arc mantle: high Q low T hydrated trench-parallel S-wave splitting Shear wave splitting: B-type fabric partly explains patterns for Honshu, Ryukyu 3D flow likely for Marianas, Central Andes Not clear: Cascadia, Costa Rica - Nicaragua Van Keken, EPSL, 2003