1 / 64

Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects

Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects Chris Carilli March 19, 2007 University of Colorado. Brief introduction to cosmic reionization

nami
Download Presentation

Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Radio astronomical probes of Cosmic Reionization and the 1st luminous objects Chris Carilli March 19, 2007 University of Colorado • Brief introduction to cosmic reionization • Objects within reionization – recent observations of molecular gas, dust, and star formation, in the host galaxies of the most distant QSOs, and more… • Neutral Intergalactic Medium (IGM) – HI 21cm telescopes, signals, and challenges USA – Carilli, Wang, Fan, Strauss, Gnedin Euro – Walter, Bertoldi, Cox, Menten, Omont

  2. Ionized Neutral Reionized

  3. Chris Carilli (NRAO) Berlin June 29, 2005 WMAP – structure from the big bang

  4. Hubble Space Telescope Realm of the Galaxies

  5. Dark Ages Epoch of Reionization Twilight Zone • Last phase of cosmic evolution to be tested • Bench-mark in cosmic structure formation indicating the first luminous structures

  6. Constraint I: Gunn-Peterson Effect • End of reionization? • f(HI) <1e-4 at z= 5.7 • f(HI) >1e-3 at z= 6.3 Fan et al 2006

  7. Constraint II: CMB large scale polarization -- Thompson scattering during reionization Page + 06; Spergel 06 TT • Scattered CMB quad. => polarized • Horizon scale => 10’s deg • e = 0.09+/-0.03 • z_reion= 11+/3 TE EE

  8. Fan, Carilli, Keating ARAA 06 Gnedin03 8Mpc • Current observations => zreion = 6 to 11 (+/-3)? • Not ‘event’ but complex process, large variance time/space (eg. Shull & Venkatesan 2006)

  9. Limitations of measurements CMB polarization • e = integral measure through universe => allows many reionization scenarios • Still a 3 result (now in EE vs. TE before) Gunn-Peterson effect • Lya to f(HI) conversion requires ‘clumping factor’ (cf. Becker etal 06) • Lya >>1 for f(HI)>0.001 => low f() diagnostic GP => Reionization occurs in ‘twilight zone’, opaque for obs <0.9 m

  10. Radio observations of z ~ 6 QSO host galaxies • IRAM 30m + MAMBO: sub-mJy sens at 250 GHz + wide fields  dust • IRAM PdBI: sub-mJy sens at 90 and 230 GHz +arcsec resol. mol. Gas, C+ • VLA: uJy sens at 1.4 GHz  star formation • VLA: < 0.1 mJy sens at 20-50 GHz + 0.2” resol.  mol. gas (low order)

  11. Magic of (sub)mm: distance independent method of studying objects in universe from z=0.8 to 10 L_FIR ~ 4e12 x S250(mJy) L_sun SFR ~ 1e3 x S250 M_sun/yr FIR = 1.6e12 L_sun

  12. Why QSOs? • Spectroscopic redshifts • Extreme (massive) systems MB < -26 => Lbol> 1e14 Lo MBH > 1e9 Mo • Rapidly increasing samples: z>4: > 1000 known z>5: 80 z>6: 15 Fan 05

  13. Magorrian, Tremaine, Gebhardt, Merritt… QSO host galaxies – MBH -- Mbulge relation • Most (all?) low z spheroidal galaxies have SMBH: MBH=0.002 Mbulge • ‘Causal connection between SMBH and spheroidal galaxy formation’ • Luminous high z QSOs have massive host galaxies (1e12 Mo)

  14. MAMBO surveys of z>2 QSOs 1e13 Lo 2.4mJy • 1/3 of luminous QSOs have S250 > 2 mJy, independent of redshift from z=1.5 to 6.4 • LFIR =1e13 Lo = 0.1 x Lbol: Dust heating by starburst or AGN?

  15. LFIR vs L’(CO) z>2 1000Mo/yr J1148+525 z=6.42 Index=1 1e11 Mo Index=1.7 • M(H_2) = X * L’(CO), X=4 (Milkyway), X=0.8 (ULIRGs) • Telescope time: t(dust) = 1hr, t(CO) = 10hr

  16. Pushing into reionization: QSO 1148+52 at z=6.4 • Highest redshift quasar known (tuniv = 0.87Gyr) • Lbol = 1e14 Lo • Black hole: ~3 x 109 Mo (Willot etal.) • Gunn Peterson trough (Fan etal.)

  17. 1148+52 z=6.42: Dust detection MAMBO 250 GHz 3’ S250 = 5.0 +/- 0.6 mJy LFIR = 1.2e13 Lo Mdust =7e8 Mo Dust formation? • AGB Winds ≥ 1.4e9yr • tuniv = 0.87e9yr => dust formation associated with high mass star formation:Silicate gains (vs. eg. Graphite) formed in core collapse SNe (Maiolino et al 2007)?

  18. 1148+52 z=6.42: Gas detection 46.6149 GHz CO 3-2 Off channels Rms=60uJy VLA IRAM • FWHM = 305 km/s • z = 6.419 +/- 0.001 • M(H2) ~ 2e10 Mo • Mgas/Mdust ~ 30 (~ starburst galaxies) • C, O production (3e7 Mo) => Star formation started early (z > 10)? VLA

  19. 1148+52 CO Excitation 2 • Tk ~ 100K • nH2 ~ 105 cm-3 => Typical of starburst galaxy nucleus (eg. NGC 253)

  20. 1148+5251 Radio-IR SED TD = 50 K Radio-FIR correlation • FIR excess = 50K dust • Radio-FIR SED follows star forming galaxy • SFR ~ 3000 Mo/yr => form large spheroid in dynamical timescale ~ 1e8 yr

  21. [CII] 158um PDR cooling line detected at z=6.4 PdBI Walter et al. 30m 256GHz Maiolino etal 1” 0.3” • Size ~ 0.5” (~ 2.5kpc) • SFR ~ 6.5e-6 L[CII] ~ 3000 Mo/yr • Enriched ISM on kpc scales • L[CII] = 4x109 Lo • L[CII]/LFIR = 3x10-4 ~ ULIRG

  22. J1148+52: VLA imaging of CO3-2 0.4”res rms=50uJy at 47GHz 1” 0.15” res • Separation = 0.3” = 1.7 kpc • TB = 35K => Typical of starburst nuclei • Merging galaxies? CO extended to NW by 1” (=5.5 kpc) tidal(?) feature

  23. Breakdown MBH - Mbulge relation at high z: SMBH forms first? CO FWHM + size: Mdyn ~ 5e10 Mo (Mgas ~ 2e10 Mo) Expected MBH ~ 2e9 Mo =>Mbulge ~ 1.5e12 Mo x 1148+5251

  24. J1148 z=6.4: gas, dust, star formation • FIR excess ~ 1e13Lo, Md~7e8Mo • Giant molecular gas cloud ~ 2e10Mo, size ~ 5.5kpc • Star formation rate ~ 3000 Mo/yr 1. Radio-FIR SED 2. Gas reservoir + Dust/Gas 3. CO excitation, TB 4. [CII]/FIR ~ ULIRG • Merging galaxy: Mdyn (r<2.5kpc) ~ 5e10 Mo • Early enrichment of heavy elements and dust => star formation started tuniv < 0.5 Gyr • Dust formation in massive stars? • Break-down of M- at high z? • ‘Smoking gun’ for coeval formation of massive galaxy + SMBH within 870 Myr of big bang? • Consistent with ‘downsizing’ in massive galaxy and SMBH formation(Heckman etal. 2004; Cowie et al. 1996)

  25. High z submm detected QSOs: Similar to low z IR-selected QSOs = star formation? Z~6 FIR QSOs Z~6 Low z IR QSOs: major mergers AGN+starburst? Low z Optical QSOs: late-type hosts

  26. The ALMA revolution -- observing normal galaxies into cosmic reionization: Panchromatic view of galaxy formation LFIR = 1e11 Lo ALMA reveals the cool universe: dust and gas -- the fundamental fuel for star formation cm: star formation, AGN (sub)mm dust, molecular gas Near-IR: stars, ionized gas, AGN

  27. Cosmic Stromgren Sphere • Accurate redshiftfrom CO: z=6.419+/0.001 Ly a, high ioniz Lines: inaccurate redshifts (z > 0.03) • Proximity effect:photons leaking from 6.32<z<6.419 White et al. 2003 z=6.32 • ‘time bounded’ Stromgren sphere: R = 4.7 Mpc tqso = 1e5 R^3 f(HI)~ 1e7yrs or f(HI) ~ 1 (tqso/1e7 yr)

  28. Loeb & Rybicki 2000

  29. CSS: Constraints on neutral fraction at z~6? • 9 z~6 QSOs with CO or MgII redshifts:<R> = 4.4 Mpc (Wyithe et al. 05; Kurk et al. 07) • GP => f(HI) > 0.001 • If f(HI) ~ 0.001, then <tqso> ~ 1e4 yrs – implausibly short given QSO fiducial lifetimes (~1e7 years)? • Probability arguments suggest: f(HI) > 0.1 P(>x_HI) Wyithe et al. 2005 90% probability x(HI) > curve =tqso/4e7 yrs

  30. Cosmic ‘phase transition’? • CSS (+ Stromgren surfaces) suggest rapid rise in f(HI) around z ~ 6 to 7? • But cf. Maselli 07: f(HI)  R^-3

  31. Studying the pristine neutral IGM using redshifted HI 21cm observations (100 – 200 MHz) • Large scale structure • cosmic density,  • neutral fraction, f(HI) • Temp: TK, TCMB, Tspin

  32. Multiple experiments under-way: ‘pathfinders’ ~1e4 m^2 LOFAR (NL) MWA (MIT/CfA/ANU) SKA 1e6 m^2 21CMA (China)

  33. Signal I: Global (‘all sky’) reionization signature in low frequency HI spectra Gnedin & Shaver 03 140MHz IGM heating: Tspin= TK > TCMB Ly coupling: Tspin=TK < TCMB All sky => Single dipole experiment with (very) carefully controlled systematics (signal <1e-4 sky), eg. EDGES (Rogers & Bowman 07)

  34. Signal II: HI 21cm Tomography of IGM Zaldarriaga + 2003 z=12 9 7.6 • TB(2’) = 10’s mK • SKA rms(100hr) = 4mK • LOFAR rms (1000hr) = 80mK

  35. Signal III: 3D Power spectrum analysis only LOFAR  + f(HI) SKA McQuinn + 06

  36. Signal IV: Cosmic Web after reionization Ly alpha forest at z=3.6 ( < 10) Womble 96 N(HI) = 1e13 – 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6 => Before reionization N(HI) =1e18 – 1e21 cm^-2

  37. Signal IV: Cosmic web before reionization: HI 21Forest 19mJy z=12 z=8 130MHz 159MHz • Perhaps easiest to detect (use long baselines) • Requires radio sources: expect 0.05 to 0.5 deg^-2 at z> 6 with S151 > 6 mJy? • radio G-P (=1%) • 21 Forest (10%) • mini-halos (10%) • primordial disks (100%)

  38. Signal V: Cosmic Stromgren spheres around z > 6 QSOs • LOFAR ‘observation’: • 20xf(HI)mK, 15’,1000km/s • => 0.5 x f(HI) mJy • Pathfinders: Set first hard limits on f(HI) at end of cosmic reionization • Easily rule-out cold IGM (T_s < T_cmb): signal = 360 mK 5Mpc 0.5 mJy Wyithe et al. 2006

  39. Challenge I: Low frequency foreground – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) Coldest regions: T ~ 100 (/200 MHz)^-2.6 K Highly ‘confused’: 1 source/deg^2 with S140 > 1 Jy

  40. Solution: spectral decomposition (eg. Morales, Gnedin…) Freq Signal/Sky ~ 2e-5 Signal 10’ FoV; SKA 1000hrs Foreground Xcorrelation/Power spectral analysis in 3D – different symmetries in freq space

  41. Challenge II: Ionospheric phase errors – varying e- content • TIDs – ‘fuzz-out’ sources • ‘Isoplanatic patch’ = few deg = few km • Phase variation proportional to ^2 • Solution: • Wide field ‘rubber screen’ phase self-calibration 15’ Virgo A VLA 74 MHz Lane + 02

  42. Challenge III: Interference 100 MHz z=13 200 MHz z=6 • Solutions -- RFI Mitigation (Ellingson06) • Digital filtering • Beam nulling • Real-time ‘reference beam’ • LOCATION!

  43. VLA-VHF: 180 – 200 MHz Prime focus X-dipole Greenhill, Blundell (SAO Rx lab); Carilli, Perley (NRAO) Leverage: existing telescopes, IF, correlator, operations • $110K D+D/construction (CfA) • First light: Feb 16, 05 • Four element interferometry: May 05 • First limits: Winter 06/07

  44. Project abandoned: Digital TV KNMD Ch 9 150W at 100km

  45. RFI mitigation: location, location location… 100 people km^-2 1 km^-2 0.01 km^-2 (Briggs 2005)

  46. Destination: Moon! RAE2 1973

  47. Focus: Reionization (power spec,CSS,abs) • Very wide field: 2x2 tile(?) • Correlator: FPGA-based from Berkeley wireless lab • Staged engineering approach: GB05 8 stations  Boolardy07 16 stations

  48. PAPER: First images/spectra Cas A 1e4Jy 180MHz 140MHz Cygnus A 1e4Jy CygA 1e4Jy 3C348 400Jy 3C392 200Jy

  49. GMRT 230 MHz – HI 21cm abs toward highest z radio galaxy and QSO (z~5.2) RFI = 20 kiloJy ! 232MHz 30mJy 229Mhz0.5 Jy rms(40km/s) = 3mJy rms(20km/s) = 5 mJy N(HI) ~ 2e20TS cm^-2 ?

  50. Radio astronomy probing cosmic reionization • ‘Twilight zone’: obs of 1st luminous sources limited to near-IR to radio wavelengths • Currently limited to pathological systems (‘HLIRGs’) • EVLA, ALMA 10-100x sensitivity is critical to study normal galaxies • Low freq pathfinders: HI 21cm signatures of neutral IGM • SKA: imaging of IGM

More Related