1 / 60

Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects

Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects Chris Carilli, NRL, April 2008. Brief introduction to cosmic reionization

pilis
Download Presentation

Radio astronomical probes of Cosmic Reionization and the 1 st luminous objects

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Radio astronomical probes of Cosmic Reionization and the 1st luminous objects Chris Carilli, NRL, April 2008 • Brief introduction to cosmic reionization • Objects within reionization – recent observations of molecular gas, dust, and star formation, in the host galaxies of the most distant QSOs: early massive galaxy and SMBH formation • Neutral Intergalactic Medium (IGM) – HI 21cm telescopes, signals, and challenges USA – Carilli, Wang, Wagg, Fan, Strauss Euro – Walter, Bertoldi, Cox, Menten, Neri, Omont

  2. Ionized Neutral Reionized

  3. Chris Carilli (NRAO) Berlin June 29, 2005 WMAP – structure from the big bang

  4. Hubble Space Telescope Realm of the Galaxies

  5. Dark Ages • Last phase of cosmic evolution to be tested • Bench-mark in cosmic structure formation indicating the first luminous structures Cosmic Reionization

  6. Constraint I: Gunn-Peterson Effect z Barkana and Loeb 2001

  7. Constraint I: Gunn-Peterson Effect • End of reionization? • f(HI) <1e-4 at z= 5.7 • f(HI) >1e-3 at z= 6.3 Fan et al 2006

  8. Constraint II: CMB large scale polarization -- Thomson scattering during reionization • Scattering CMB local quadrapole => polarized • Large scale: horizon scale at reioniz ~ 10’s deg • Signal is weak: • TE ~ 10% TT • EE ~ 1% TT Hinshaw et al 2008 e = 0.084 +/- 0.016 ~ l/mfp ~l nee(1+z)^2

  9. Constraint II: CMB large scale polarization -- Thomson scattering during reionization • Rules-out high ionization fraction at z> 15 • Allows for finite (~0.2) ionization to high z • Most action occurs at z ~ 8 to 14 Dunkley et al. 2008

  10. Fan, Carilli, Keating ARAA 06 GP => First light occurs in ‘twilight zone’, opaque for obs <0.9 m • GP => pushing into near-edge of reionization at z ~ 6 • CMB pol => substantial ionization fraction persists to z ~ 11

  11. Radio observations of z ~ 6 QSO host galaxies • IRAM 30m + MAMBO: sub-mJy sens at 250 GHz + wide fields  dust • IRAM PdBI: sub-mJy sens at 90 and 230 GHz +arcsec resol. mol. Gas, C+ • VLA: uJy sens at 1.4 GHz  star formation • VLA: < 0.1 mJy sens at 20-50 GHz + 0.2” resol.  mol. gas (low order)

  12. Why QSOs? • Spectroscopic redshifts • Extreme (massive) systems MB < -26 => Lbol> 1e14 Lo MBH > 1e9 Mo • Rapidly increasing samples: z>4: > 1000 known z>5: > 100 z>6: 20 Fan 05

  13. Magorrian, Tremaine, Gebhardt, Merritt… QSO host galaxies – MBH -- Mbulge relation • Most (all?) low z spheroidal galaxies have SMBH: MBH=0.002 Mbulge • ‘Causal connection between SMBH and spheroidal galaxy formation’ • Luminous high z QSOs have massive host galaxies (1e12 Mo)

  14. MAMBO surveys of z>2 QSOs 2.4mJy • 1/3 of luminous QSOs have S250 > 2 mJy, independent of redshift from z=1.5 to 6.4 • LFIR ~ 1e13 Lo ~ 0.1 x Lbol Dust heating by starburst or AGN?

  15. Dust => Gas: LFIR vs L’(CO) z ~ 6 QSO hosts ~ Star formation 1e3 Mo/yr Index=1.5 1e11 Mo ~ Gas Mass • non-linear => increasing SF eff (SFR/Gas mass) with increasing SFR • FIR-luminous high z QSO hosts have massive gas reservoirs (>1e10 Mo) = fuel for star formation

  16. Pushing into reionization: QSO 1148+52 at z=6.4 • Highest redshift SDSS QSO (tuniv = 0.87Gyr) • Lbol = 1e14 Lo • Black hole: ~3 x 109 Mo (Willot etal.) • Gunn Peterson trough (Fan etal.)

  17. 1148+52 z=6.42: Dust detection MAMBO 250 GHz 3’ S250 = 5.0 +/- 0.6 mJy LFIR = 1.2e13 Lo Mdust =7e8 Mo Dust formation? • AGB Winds ≥ 1.4e9yr > tuniv = 0.87e9yr => dust formation associated with high mass star formation:Silicate gains (vs. eg. Graphite) formed in core collapse SNe (Maiolino 07)?

  18. 1148+5251 Radio to near-IR SED TD = 50 K Elvis SED Radio-FIR correlation • FIR excess = 50K dust • Radio-FIR SED follows star forming galaxy • SFR ~ 3000 Mo/yr

  19. 1148+52 z=6.42: Gas detection 46.6149 GHz CO 3-2 Off channels Rms=60uJy VLA IRAM • FWHM = 305 km/s • z = 6.419 +/- 0.001 • M(H2) ~ 2e10 Mo • Mgas/Mdust ~ 30 (~ starburst galaxies) VLA

  20. CO excitation ladder 2 NGC253 Dense, warm gas: CO excitation similar to starburst nucleus Tkin > 80 K nH2 ~ 1e5 cm^-3 MW

  21. J1148+52: VLA imaging of CO3-2 0.4”res rms=50uJy at 47GHz 1” 0.15” res • Separation = 0.3” = 1.7 kpc • TB = 35K => Typical of starburst nuclei, but scale is 10x larger CO extended to NW by 1” (=5.5 kpc)

  22. [CII] 158um fine structure line: dominant ISM gas cooling line [CII] traces PDRs associated with star formation

  23. [CII] 158um at z=6.4 • z>4 => FS lines redshift to mm band • L[CII] = 4x109 Lo (L[NII] < 0.1 L[CII]) • [CII] similar extension as molecular gas ~ 6kpc => distributed star formation • SFR ~ 6.5e-6 L[CII] ~ 3000 Mo/yr IRAM 30m [CII] [NII] 1” [CII] PdBI Walter et al. [CII] + CO 3-2

  24. Gas dynamics: Potential for testing MBH - Mbulge relation at high z -- mm lines are only direct probe of host galaxies Mdyn~ 4e10Mo Mgas~ 2e10 Mo Mbh ~ 3e9 Mo => Mbulge ~1e12 Mo (predicted) 1148+5251 z=6.42 z<0.5

  25. FIR - Lbol in QSO hosts Z~6 Low z IR QSOs: major mergers AGN+starburst? Low z Optical QSOs: early-type hosts Wang + 08, Hao 07 FIR luminous z ~ 6 QSO hosts follow relation establish by IR-selected QSOs at low z => (very) active star forming host galaxies?

  26. Downsizing: Building a giant elliptical galaxy + SMBH at tuniv < 1Gyr z=10 10.5 Li, Hernquist, Roberston.. • Multi-scale simulation isolating most massive halo in 3Gpc^3 (co-mov) • Stellar mass ~ 1e12 Mo forms in series (7) of major, gas rich mergers from z~14, with SFR ~ 1e3 - 1e4 Mo/yr • SMBH of ~ 2e9 Mo forms via Eddington-limited accretion + mergers • Evolves into giant elliptical galaxy in massive cluster (3e15 Mo) by z=0 8.1 6.5 • Rapid enrichment of metals, dust, molecules • Rare, extreme mass objects: ~ 100 SDSS z~6 QSOs on entire sky • Integration times of hours to days to detect HyLIGRs

  27. SMA The need for collecting area: lines cm telescopes: low order molecular transitions -- total gas mass, dense gas tracers , GBT (sub)mm: high order molecular lines. fine structure lines -- ISM physics, dynamics • FS lines will be workhorse lines in the study of the first galaxies with ALMA. • Study of molecular gas in first galaxies will be done primarily with cm telescopes ALMA will detect dust, molecular and FS lines in ~ 1 hr in ‘normal’ galaxies (SFR ~ 10 Mo/yr = LBGs, LAEs) at z ~ 6, and derive z directly from mm lines.

  28. The need for collecting area: continuum A Panchromatic view of galaxy formation Arp 220 vs z SMA cm: Star formation, AGN (sub)mm Dust, molecular gas Near-IR: Stars, ionized gas, AGN

  29. Cosmic Stromgren Sphere • Accurate host redshiftfrom CO: z=6.419+/0.001 Ly a, high ioniz lines: inaccurate redshifts (z > 0.03) • Proximity effect:photons leaking from 6.32<z<6.419 White et al. 2003 z=6.32 • ‘time bounded’ Stromgren sphere: R = 4.7 Mpc tqso = 1e5 R^3 f(HI)~ 1e7yrs or f(HI) ~ 1 (tqso/1e7 yr)

  30. Loeb & Rybicki 2000

  31. CSS: Constraints on neutral fraction at z~6 • Nine z~6 QSOs with CO or MgII redshifts:<R> = 4.4 Mpc • GP => f(HI) > 0.001 • If f(HI) ~ 0.001, then <tqso> ~ 1e4 yrs – implausibly short given QSO fiducial lifetimes (~1e7 years)? • Probability arguments + size evolution suggest: f(HI) > 0.05 Wyithe et al. 2005 Fan et al 2006 P(>xHI) 90% probability x(HI) > curve =tqso/4e7 yrs

  32. OI Fan, Carilli, Keating ARAA 2006 • Not ‘event’ but complex process, large variance: zreion ~ 14 to 6 • Good evidence for qualitative change in nature of IGM at z~6 ESO

  33. 3, integral measure? Geometry, pre-reionization? Local ionization? OI Abundance? Saturates, HI distribution function, pre-ionization? Local ioniz.? • Current probes are all fundamentally limited in diagnostic power • Need more direct probe of process of reionization ESO

  34. Studying the pristine neutral IGM using redshifted HI 21cm observations (100 – 200 MHz) 1e13 Mo • Large scale structure • cosmic density,  • neutral fraction, f(HI) • Temp: TK, TCMB, Tspin 1e9 Mo

  35. Experiments under-way: pathfinders 1% to 10% SKA LOFAR (NL) MWA (MIT/CfA/ANU) SKA 21CMA (China)

  36. Signal I: HI 21cm Tomography of IGM Furlanetto, Zaldarriaga + 2004 z=12 9 • TB(2’) = 10’s mK • SKA rms(100hr) = 4mK • LOFAR rms (1000hr) = 80mK 7.6

  37. Signal II: 3D Power spectrum analysis only LOFAR  + f(HI) SKA McQuinn + 06

  38. Signal III: Cosmic Web after reionization Ly alpha forest at z=3.6 ( < 10) Womble 96 • N(HI) = 1e13 – 1e15 cm^-2, f(HI/HII) = 1e-5 -- 1e-6 => before reionization N(HI) =1e18 – 1e21 cm^-2 • Lya ~ 1e7 21cm => neutral IGM opaque to Lya, but translucent to 21cm

  39. Signal III: Cosmic web before reionization: HI 21Forest 19mJy z=12 z=8 130MHz 159MHz • Perhaps easiest to detect • Only probe of small scale structure • Requires radio sources: expect 0.05 to 0.5 deg^-2 at z> 6 with S151 > 6 mJy? • radio G-P (=1%) • 21 Forest (10%) • mini-halos (10%) • primordial disks (100%)

  40. Signal IV: Cosmic Stromgren spheres around z > 6 QSOs • LOFAR ‘observation’: • 20xf(HI)mK, 15’,1000km/s • => 0.5 x f(HI) mJy • Pathfinders: Set first hard limits on f(HI) at end of cosmic reionization 5Mpc Wyithe et al. 2006 Prediction: first detection of HI 21cm signal from reionization will be via imaging rare, largest CSS, or absorption toward radio galaxy. 0.5 mJy

  41. Challenge I: Low frequency foreground – hot, confused sky Eberg 408 MHz Image (Haslam + 1982) Coldest regions: T ~ 100 (/200 MHz)^-2.6 K Highly ‘confused’: 1 source/deg^2 with S140 > 1 Jy

  42. Solution: spectral decomposition (eg. Morales, Gnedin…) • Foreground = non-thermal = featureless over ~ 100’s MHz • Signal = fine scale structure on scales ~ few MHz Signal/Sky ~ 2e-5 10’ FoV; SKA 1000hrs Cygnus A 500MHz 5000MHz • Simply remove low order polynomial or other smooth function • Xcorr/power spectral analysis in 3D – different symmetries in freq

  43. Challenge II: Ionospheric phase errors – varying e- content • TIDs – ‘fuzz-out’ sources • ‘Isoplanatic patch’ = few deg = few km • Phase variation proportional to ^2 • Solution: • Reionization requires only short baselines (< 1km) • Wide field ‘rubber screen’ phase self-calibration 15’ Virgo A VLA 74 MHz Lane + 02

  44. Challenge III: Interference 100 MHz z=13 200 MHz z=6 • Solutions -- RFI Mitigation (Ellingson06) • Digital filtering • Beam nulling • Real-time ‘reference beam’ • LOCATION!

  45. VLA-VHF: 180 – 200 MHz Prime focus X-dipole Greenhill, Blundell (SAO); Carilli, Perley (NRAO) Leverage: existing telescopes, IF, correlator, operations • $110K D+D/construction (CfA) • First light: Feb 16, 05 • Four element interferometry: May 05 • First limits: Winter 06/07

  46. Project abandoned: Digital TV KNMD Ch 9 150W at 100km

  47. RFI mitigation: location, location location… 100 people km^-2 1 km^-2 0.01 km^-2 Chippendale & Beresford 2007

  48. C.Carilli, A. Datta (NRAO/SOC), J. Aguirre (U.Penn) • Focus: Reionization (power spec,CSS,abs) • Very wide field: 30deg • Correlator: FPGA-based from Berkeley wireless lab • Staged engineering approach: GB05 8 stations  Boolardy08 32 stations

  49. PAPER: Staged Engineering • Broad band sleeve dipole + flaps • 8 dipole test array in GB (06/07) => 32 station array in WA (2008) to 256 (2009) • FPGA-based ‘pocket correlator’ from Berkeley wireless lab • S/W Imaging, calibration, PS analysis: AIPY + Miriad/AIPS => Python + CASA, including ionospheric ‘peeling’ calibration 100MHz 200MHz BEE2: 5 FPGAs, 500 Gops/s

  50. PAPER/WA -- 4 Ant, July 2007 RMS ~ 1Jy; DNR ~ 1e4 1e4Jy Parsons et al. 2008 CygA 1e4Jy

More Related