1 / 50

Delia Hasch

Spinstruktur des Nukleons -elektromagnetische Sonden bei hohen Energien-. Delia Hasch. KHuK - Perspektivtagung, GSI, 25/26. Oktober 2007. the spin of the nucleon. outline:. prerequisites. polarisation of quarks:. polarisation of gluons: D G. hunting for the OAM L q,g. new

naomi
Download Presentation

Delia Hasch

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spinstruktur des Nukleons-elektromagnetische Sonden bei hohen Energien- Delia Hasch KHuK - Perspektivtagung, GSI, 25/26. Oktober 2007

  2. the spin of the nucleon outline: • prerequisites • polarisation of quarks: • polarisation of gluons: DG • hunting for the OAM Lq,g new developments • transverse spin phenomena: transversity&friends

  3. how to study the nucleon structure ? … deep-inelastic scattering (DIS) : Q2 q factorisation: universal, parametrises the structure of the nucleon

  4. HERMES: 27 GeV e+, e- HERMES: p , d, 3He unpol. H, D, 4He, N, Ne, Kr, Xe Compass: d , p experimental prerequisites -the 2nd generation- 1995-2007 @DESY COMPASS @CERN: 160 GeV m+ 2002-2010-? f=1 f: target dilution factor f=1 gas targets, f~0.02 solid targets

  5. HERMES: 27 GeV e+, e- HERMES: p , d unpol. H, D, 4He, 14N, 20Ne, Kr, Xe Compass: d , p experimental prerequisites -the 2nd generation- hadron ID: COMPASS: 160 GeV m+ f=1

  6. HERMES: 27 GeV e+, e- SMC E155 HERMES E142 HERMES: p , d unpol. H, D, 4He, 14N, 20Ne, Kr, Xe Compass: d , p experimental prerequisites -the 2nd generation- hadron ID COMPASS: 160 GeV m+ f=1 DIS

  7. polarised structure function g1

  8. polarised structure function g1

  9. (exp) (theory) (evol) = 0.330 ± 0.025 ± 0.011 ± 0.028 a0=DS MS MS MS a0= DS = 0.35 ± 0.03(stat) ± 0.05(sys+evol) polarisation of quarks assume saturation of G1d : a0=DS from theory from hyperon beta decay QCD-fit:

  10. valence quarks are well determined: • Duv >0,Ddv <0 • gluons and sea quarks are poorly constraint by data Dq andDGfrom inclusive data SU(3)f symmetry implicitly assumed

  11. flavour separation: semi-inclusive DIS HERMES: only direct 5-flavour separation of polarised pdfs up in short: down • Du(x) is large and positive • Dd(x) is smaller and negative • Du, Dd, Ds are approx. zero ! u d awaiting results from  lower values of x strange Ds=0

  12. AAC GRSV BB LSS how to measure the gluon polarisation DG …reminder: from scaling violation [hep-ph/0603213]

  13. unpolarised DIS AAC GRSV BB LSS • need more direct probes how to measure the gluon polarisation DG …reminder: from scaling violation [hep-ph/0603213]

  14. direct measurement of DG • golden channel: charm production •  theoretically very clean •  experimentally very challenging Photon-Gluon Fusion (PGF) • hadron production at high PT(hard scale) • experimentally very clean  highly model dependent due to variety of background processes

  15. other sub-processes make life hard: q q qg + + + .. g g ‘direct’ measurement of DG • hadron production at high PT (hard scale) • experimentally very clean  highly model dependent PGF extraction relies on Monte Carlo description of subprocesses (pythia)

  16. direct measurement of DG • golden channel: charm production • hadron production at high PT HERMES Preliminary Dg/g @x[0.06,0.3] Dg/g ~ zero! x

  17. Q2 t hunting for Lq ≈30% ≈zero Ji’s sum rule: Generalised PartonDistributions(GPDs)appear in the factorisation scheme for hard exclusive processes

  18. generalised parton distributions longitudinal momentum fraction x at transverse location b T 3D picture of the nucleon GPDs only known framework to gain information on 3D picture of hadrons parton distributions longitudinal momentum fraction x form factors location of partons in nucleon • high beam energy (hard process) • very high luminosity (small cross sections) • complete event reconstruction (ensure exclusivity) very ambitious measurements

  19. Deeply Virtual Compton Scattering only @HERA • different beam charges • polarised beams • polarised targets DVCS transverse target-spin asymmetry: • sensitive to Jq Ju=0 Ju=0.2 Ju=0.4 GPD model by: [Goeke et al. (2001), code:VGG] [Ellinghaus et al. (2005)]

  20. hunting for Lq model dependent constraint of Ju vs Jd 0709.0450[nucl-ex] Ju+Jd/2.9=0.42±0.21(exp)±0.06(th) arXiv:0705.4295[hep-lat] dedicated measurements of exclusive processes: @HERMES with recoil detector (2006/07) JLab Hall-A and Hall-B experiments (2007++) hep-ex/0606061

  21. transverse spin phenomena [courtesy of A. Bacchetta, DESY] beyond collinear approximation

  22. the nucleon quark structure transversely polarised quarks and nucleons dq(x): helicity flip transversity longitudinally polarised quarks and nucleons Dq(x): helicity difference unpolarised quarks and nucleons q(x) spin averaged well known

  23. Peculiarities ofdq • probes relativistic nature of quarks • otherwise dq =Dq • no gluon analog for spin-1/2 nucleon • different Q2 evolution than Dq • sensitive to valence quark polarisation • only known way to obtain tensor charge the nucleon quark structure transversely polarised quarks and nucleons dq(x): helicity flip transversity longitudinally polarised quarks and nucleons Dq(x): helicity difference unpolarised quarks and nucleons q(x) spin averaged well known

  24. peculiarity of transversity DIS: hadron production: + - Chiral-oddfragmenation funtionCollinsFF : + - + - • transversity flips helicity of both quark and nucleon + ? - needs chiral-odd + golden channel + - - + - + - chiral-odd partner + - (PAX@FAIR) Drell-Yan:

  25. h q q h Collins fragmentation function CollinsFF H1(z,kT2)correlates transverse spin of fragmenting quark and transverse momentumPh of produced hadronh chiral–odd& naïve T–odd produces left-right asymmetry in the direction of the outgoinghadron  leads to single-spin asymmetries

  26. single-spin asymmetries Unpolarised lepton beam (U)  Transversely polarised target (T) distinct signature! Sivers distribution function: • describes correlation between intrinsic quark pT and transverse nucleon spin • non-zero Sivers DF requires non-vanishing orbital angular momentum • Chiral – even & naïve T – odd

  27. ep  pX crucial test of pQCD: Sivers asymmetries p+are substantial and positive: • first unambiguous evidence for a non-zeroT-odd distribution function in DIS • requires non-zero quark orbital angular momentum !

  28. ep  pX Collins asymmetries first time: transversity & Collins FF are non-zero! • p+ asymmetries positive – no surprise: u-quark dominance and expect dq>0 since Dq>0 • large negative p- asymmetries – ARE a surprise: suggests the disfavoured CollinsFF being large and with oposite sign:

  29. ep  pX Collins asymmetries • deuteron target:

  30. xdu(x) xdd(x) first glimpse of transversity [Anselmino et al. PRD75(2007)] up global fit down milestone!

  31. new concepts: GPDs  3D picture of the nucleon TMDs  beyond collinear approximation structure of the nucleon from polarised DIS : from unpolarised DIS first glimpse a0=DS =0.330±0.025(exp)  first signals of GPDs: Ju +Jd first extraction of dq direct flavour decomposition

  32. structure of the nucleon -the open tasks-  detailed measurement of x-dependence first glimpse  first signals of GPDs: Ju +Jd  detailed measurement in 3 kine variables first extraction of dq  extrapolation x0, x1  detailed measurement in 2 kine variables

  33. EIC, PAX@FAIR RHIC, EIC, (JPARC) polarised collider: EIC structure of the nucleon -the future facilities- first glimpse  first signals of GPDs: Ju +Jd first extraction of dq JLab@12GeV Compass-DVCS EIC

  34. e p future facilities high CM energies  wide kinematic range in x and Q2 high luminosities  mapping out observables differential in 2D and 3D polarised beams and targets @12 GeV  mapping out GPDs by measuring exclusive process Luminosity(*1030/cm2/s) 109 JLab@12GeV 108 107 JLab EIC (eRHIC, ELIC) 106 ELIC 105 107 104 • ‘dream machine’ for polarised DIS`: would address all open questions eRHIC 103 102 HERA HERMES 10 COMPASS 100 CM energy (GeV) 10 1

  35. future facilities high CM energies  wide kinematic range in x and Q2 high luminosities  mapping out observables differential in 2D and 3D polarised beams and targets EIC (eRHIC) Luminosity(*1030/cm2/s) 109 JLab@12GeV 108 107 JLab 106 ELIC 105 107 104 eRHIC 103 102 HERA HERMES 10 COMPASS 100 CM energy (GeV) 10 1

  36. Zusammenfassung neue Entwicklungen in der Spinphysik: ≈Null ≈30% Wege zur Messung aller Komponenten der Spin-SR sind aufgezeichnet; wir müssen sie gehen !  neue Anlagen (EIC) neue, komplementäre Konzepte/Entwicklungen: GPDs : Korrelation von longitudinalem Impuls + transvesaler Position  3D Abbild des Nukleons TMDs : Korrelation von transversalem Impuls + Spin  jenseits kollinearer Näherung

  37. Backup slides

  38. template -GPDs correlation of longitudinal momentum and transverse location • -TMDs correlation of transverse momentum and spin • explore spin-orbit structure • beyond collinear approximation • EIC: Lumi: • eRHIC: ~2*1032 /cm2/s • (~1033 /cm2/s with R&D) • ELIC: ~1034 /cm2/s

  39. polarised inclusive DIS spin1: often neglected… but:

  40. polarised structure function g1

  41. distribution function fragmentation function ‘purities’ (based on MC tuned to HERMES multiplicities) polarised semi -inclusive DIS

  42. unpolarised DIS • need more direct probes how to further proceed ? • Dq and DG from inclusive DIS data via evolution equations : • requires wide kinematic range in Q2 and x • only fixed targetspin experiments so far … need polarisedcollider to extend kinematic coverage OR:

  43. direct measurement of DG • golden channel: charm production •  theoretically very clean •  experimentally very challenging • @HERMES (√s=7 GeV): • hadron production at high PT ALL PythiaMC: Dg/g = -1 Dg/g = 0 Dg/g = +1

  44. direct measurement of DG • golden channel: charm production • @HERMES: hadron production at high PT : direct, resolved, soft processes [Pythia MC] signal processes: PGF QCD 22(g)

  45. direct measurement of DG • golden channel: charm production • @HERMES: hadron production at high PT

  46. CLAS MC Bethe-Heitler associated BH + data hunting for Lq Generalised Parton Distributions (GPDs) hard exclusive processes are difficult to measure: • high beam energy (hard process) • very high luminosity (small cross sections) • complete event reconstruction (ensure exclusivity) • no complete event reconstruction  missing mass (MX) technique: HERMES MN

  47. DVCS-BH interference leads to non-zero azimuthal asymmetry Deeply Virtual Compton Scattering Bethe-Heitler DVCS Bethe-Heitler

  48. ~ DsC~cosf∙Re{ H+ xH +… } ~ DsLU~sinf∙Im{H+ xH+ kE} DsUT polarisation observables: ~ DsUL~sinf∙Im{H+ xH+ …} beam target DVCS asymmetries I~Ds  different charges: e+ e-(only @HERA!):  H H ~ H DsUT~sinf∙Im{k(H- E) + … } H, E  kinematically suppressed x = xB/(2-xB ),k = t/4M2

  49. e+/- p→ e+/- p g (MX<1.7 GeV) (in HERMES acceptance) Regge, D-term Regge, no D-term fac., D-term fac., no D-term DVCS: beam charge asymmetry GPD calculations: different parametrisations forH • Vanderhaeghen(1999/02)–  AC sensitive to GPD-models tiny e-p sample (L=10pb-1) simultanous fit of charge and polarisation observables provide pure interference term HERA: 2005/06 e- beam (10x)

  50. Bg ~1% Bg ~10% prospects for exclusive processes  2006-07: e+/e- 27.5 GeV detection of recoiling proton dedicated measurements of hard exclusive processes with recoil

More Related