1 / 8

POKOK BAHASAN 2 PERKALIAN TITIK DAN SILANG

POKOK BAHASAN 2 PERKALIAN TITIK DAN SILANG. SPB 2.3 HASIL KALI TRIPEL SPB 2.4 HIMPUNAN VEKTOR-VEKTOR RESIPROKAL Oleh Nurul Saila Senin , 24 Oktober 2011 Selasa , 25 Oktober 2011. HASIL KALI TRIPEL.

neith
Download Presentation

POKOK BAHASAN 2 PERKALIAN TITIK DAN SILANG

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. POKOK BAHASAN 2 PERKALIAN TITIK DAN SILANG SPB 2.3 HASIL KALI TRIPEL SPB 2.4 HIMPUNAN VEKTOR-VEKTOR RESIPROKAL OlehNurulSaila Senin, 24 Oktober 2011 Selasa, 25 Oktober 2011

  2. HASIL KALI TRIPEL • Hasil kali titikdansilangdarivektor A, B dan C akanberupa: (A.B)C, A.(BxC) dan Ax(BxC) • Hasil kali A.(BxC) disebuthasil kali tripelskalar(hasil kali kotak) [ABC]. • Hasil kali Ax(BxC) disebuthasil kali tripelvektor. Hukum-hukumyang berlaku: • (A.B)C  A(B.C) • A.(BxC)=B.(CxA)=C.(AxB)=volume sebuahjajaran-genjangruangygmemilikisisi-sisi A, B dan C ataunegatifdari volume ini, sesuai dg apakah A, B dan C membentuksebuahsistemtangankananataukahtidak.

  3. Jika A = A1i +A2j+A3k, B = B1i +B2j+B3k dan C = C1i +C2j+C3k, maka: • Ax(BxC)  (AxB)XC

  4. latihan • Hitunglah (2i-3j).[(i+j-k)x(3i-k)]. • Buktikanbhw A.(BxC) = B.(CxA) = C.(AxB). • Buktikanbhw A.(BxC) = (AxB).C. • Buktikanbhw A.(AxC) = 0 • Buktikanbhw: A.BxC = 0 jhj A, B, C terletaksebidang. • Misalkan r1=x1i+y1j+z1k, r2=x2i+y2j+z2k dan r3=x3i+y3j+z3k adl vektor2 kedudukandarititik-titik P1(x1,y1,z1), P2(x2,y2,z2) dan P3(x3,y3,z3). Carilah pers. Bidangygmelaluiketigatitikitu.

  5. Carilah pers. Bidangygditentukanolehtitik-titik P1(2, -1, 1), P2(3, 2, -1), P3(-1, 3, 2).

  6. POKOK BAHASAN 2 PERKALIAN TITIK DAN SILANG SUB POKOK BAHASAN 2.4 HIMPUNAN VEKTOR-VEKTOR RESIPROKAL OlehNurulSaila Senin, 24 Oktober 2011 Selasa, 25 Oktober 2011

  7. Himpunanvektor-vektorResiprokal • Himpunanvektor-vektor a, b, c dan a’, b’, c’ disebuthimpunanatausistemvektor-vektorresiprokaljika: a.a’=b.b’=c.c’ = 1 a’.b=a’.c=b’.a=b’.c=c’.a=c’.b=0 • Himpunan-himpunan a, b, c dan a’, b’, c’ adalahhimpunanvektor-vektorresiprokaljikadanhanyajika:

  8. Contoh: • Carilahsuatuhimpunanvektor-vektorresiprokalterhadaphimpunanvektor 2i+3j-k, i-j-2k, -i+2j+2k.

More Related