1 / 21

ADOMOCA Annual Meeting Novembre 2007 D. Cariolle

ADOMOCA Annual Meeting Novembre 2007 D. Cariolle. The linerized ozone scheme [ Cariolle and Déqué, JGR, 1986; P. Simon 2001; Cariolle, 2004 ]  r O 3 /  t = A 1 + A 2 (r O 3 - A 3 ) + A 4 (T – A 5 ) + A 6 ( - A 7 ) + A 8 r O 3 A 1 = (P-L) : Production-Loss rate

nen
Download Presentation

ADOMOCA Annual Meeting Novembre 2007 D. Cariolle

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ADOMOCA Annual Meeting Novembre 2007 D. Cariolle

  2. The linerized ozone scheme [Cariolle and Déqué, JGR, 1986; P. Simon 2001; Cariolle, 2004]  rO3 /  t = A1 + A2 (rO3 - A3) + A4 (T – A5) + A6 ( - A7) + A8 rO3 A1 = (P-L) : Production-Loss rate A2 =  (P-L) /  rO3 A3 ; rO3 : ozone mixing ratio A4 =  (P-L) /  T A5 ; T : temperature A6 =  (P-L) /   A7 ;  : ozone column A8 = - Khet 2D coefficients ( , p) from the 2D photochemical Model (MOBIDIC) quadratic function of total chlorine

  3. The 2D MOBIDIC model [Cariolle, CNRM, 1984 ; Teyssèdre, UPS, 1994] • 2 dimensions (latitude, pressure) • thermodynamic forcing from ARPEGE-Climat (T, v*, w*) • Stratospheric chemistry: 56 species, 175 reactions • impact studies • parameterisation of the ozone Production and Loss rates: • At equilibrium => (P-L) ; rO3 ; T ;  • perturbations +/- 10%;+/- 10 K => new equilibrium:  (P-L) /  rO3 ; •  (P-L) /  T ;  (P-L) /  

  4. Version 2.1 Original: Version 1.0

  5. Version 2.1 A8 = - Khet Khet = (1/8days)(Clx/2ppbv)2 (daytime and T<195K)

  6. COLD AIR TRACER • x/  t = 1/1 (1-x) – 1/ 2 x With 1equal to a few hours and 1/ 2=0 if T<195 K And 2equal to several days (rate of HNO3 destruction) and 1/ 1=0 if T> 195K  rO3 /  t = A1 + …. + A8 rO3 T>195 K T<195 K With A8 = - Khet .x. (195/T) 4,5 (daytime)

  7. v2 without cold tracer v2 with cold tracer

  8. Analyse CEPMMT 5/11/2007

  9.  rO3 /  t = A1 + A2 (rO3 - A3) + A4 (T – A5) + A6 ( - A7) + A8 rO3 • + B1 (rNOx - B2) • + B3 (rCO - B4) • + B5 (rH2O - B6) • B1 =  (P-L) /  rNOy ; B3 =  (P-L) /  rCO ; B5 =  (P-L) /  rH2O • B2 = rNOy ; B4 = rCO ; B6 = rH2O from the 2D photochemical rNOy - B2 or (rNOy - B2)/B2 from aircraft, boats, road traffic scenarios and CTM. Idem for CO and H2O

  10. Destruction • in the upper • stratosphere • Production • in the lower stratosphere and troposphere

  11. Destruction in • most of the stratosphere

  12. Rapid evaluation at steady state: ∆rO3 (%) = (- B1 B2 /A1A2 )∆rNOy(%) Or ∆rO3 (%) = (- B3 B4 /A1A2 )∆rCO(%) Or ∆rO3 (%) = (- B5 B6 /A1A2 )∆rH2O(%)

  13. The linerized CO and HNO3 schemes  rx/  t = A1 + A2 (rx - A3) + A4 (T – A5) A1 = (P-L) : Production-Loss rate A2 =  (P-L) /  rx A3 ; rx: CO or HNO3 mixing ratio A4 =  (P-L) /  T A5 ; T : temperature 2D coefficients ( , p) from the 2D photochimical Model (MOBIDIC)

  14. Assimilation: • CO: • ODIN, MLS profiles • MOPIT, IASI columns • HNO3: • MLS profiles • IASI columns

More Related