1 / 8

MLEA

MLEA. Christopher Chedeau Gauthier Lemoine. Algorithmes. Nu mériques KNN et WKNN Continuousification (Naïve, NBF, VDM, MDV ) Symboliques Naïve Bayesian ID3 (Gain Ratio, Gini, Elagage) Discretization (EFD, EWD). Algorithmes. Centrer & R éduire Cleaning & Distilling K- means (++)

nerice
Download Presentation

MLEA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. MLEA Christopher Chedeau Gauthier Lemoine

  2. Algorithmes • Numériques • KNN et WKNN • Continuousification (Naïve, NBF, VDM, MDV) • Symboliques • Naïve Bayesian • ID3 (Gain Ratio, Gini, Elagage) • Discretization (EFD, EWD)

  3. Algorithmes • Centrer & Réduire • Cleaning&Distilling • K-means(++) • K-Fold Cross Validation • Courbes ROC

  4. Balance Valeursnumériquesdiscrètes

  5. Wine Valeursnumériques continues

  6. Paramétrage de la discrétisation

  7. Adult Valeursnumériques et symboliques

  8. Conclusion • ID3 et Naïve Bayesian> KNN (y compris pour des données continues). • Temps d’exécution de KNN prohibitif. • Optimisations de type KD-Tree ne marchent pas toujours. (Curse of dimensions). • Paramétrage nécessaire pour chaque dataset.

More Related