320 likes | 397 Views
PHOTOSYNTHESIS AND CELLULAR RESPIRATION. By: Diana Boyle, Jordan Capelle , Ross Dairiki, and Erika Keer. Basic Info. Definition : process of using sunlight (light energy) to turn carbon dioxide & water into glucose (chemical energy) & oxygen Equation : 6 CO2 + 6 H2O --> C6H12O6 + 6 CO2
E N D
PHOTOSYNTHESISANDCELLULAR RESPIRATION By: Diana Boyle, Jordan Capelle, Ross Dairiki, and Erika Keer
Basic Info. • Definition: process of using sunlight (light energy) to turn carbon dioxide & water into glucose (chemical energy) & oxygen • Equation:6CO2 + 6H2O --> C6H12O6 + 6CO2 • Location: chloroplast of cell • 2 part process: Light-Dependent (“Light”) Reactions, Light-Independent (“Dark”) Reactions
Light-Dependent Reactions • Also known as “light”reactions • Definition: Uses energy from sunlight to split H2O and produces ATP (form of energy) & NADPH (electron carrier) as well as O2 (waste product) • Location: thylakoid membrane of chloroplast - Membrane=studded with protein-complexes - Contains primary electron acceptor - Contains light-absorbing pigments - Primarily chlorophyll a and chlorophyll b - Accessory pigments (help plants use more light since each pigment absorbs specific wavelength) 2 types: 1) Linear Electron Flow 2) Cyclic Electron Flow
Linear Electron Flow • Photosystem II: Contains reaction center called p. 680 (absorbs 680 nm light best) • Photosystem I: Contains reaction center called p. 700 (absorbs 700 nm light best)
Steps of Linear Electron Flow: 1) Light hits antenna pigments of PSII, which passes energy to chlorophyll a, exciting some of its electrons; it gets replacement electrons from H20 molecules, leaving O2 and H+ ions in the lumen 2) As energized e- pass along proteins in the membrane (called electron transport system/ETS), some of the electron transport energy is used to pump H+ ions into the lumen 3) The e- go to PSI and replace electrons lost by p700 when it was hit by light
Steps of Linear Electron Flow (continued) 4) The excited e- fromPSI go along membrane proteins to NADP+, which then forms NADPH in the stroma, absorbing H+ ions 5) The H+ pumped into the lumen (and H+ removed from stroma by NADP+) form a chemiosmotic gradient, which is used for synthesis of ATP as those H+ ions return to the stroma by way of a special protein in membrane ATP synthase
Cyclic Electron Flow 1) Light energy energizes an electron from PSI 2) e- travels through ETS proteins; this pumps H+ into the lumen 3) e- returns to PSI; a chemiosmotic gradient is used to make ATP
Light-Independent(Dark) Reactions/Calvin Cycle Definition: The process of fixing CO2 into glucose using NADPH and ATP from the light-dependent reactions
Steps: 1) 6 CO2 join with 6RuBP (RibuloseBisphosphate) with help of RuBisco enzyme (RibuloseBisphosphate Carboxylase) to form unstable 6-carbon molecule 2) 6 6-carbon molecules split into 12 13-PG (3-phosphogylcerate) molecules 3) Energy and a phosphate from 12 ATP are added to the 3-GP forms 12 13-BPG (1, 3-BisphosphoGlycerate) 4) 12 NADPH turn 12 1, 3-BPG into 12G-3P (Glyceraldehyde 3-Phosphate) 5) 2 of 12 G-3P become 6RuP (Ribulose Phosphate) 6) Energy and P from 6 ATP turn 6RuP (Ribulose Phosphate) into 6RuBP cycle begins again
The following music video includes some general information about photosynthesis to provide a break from slides! Sorry for the freeze frames, they were needed to sync timing. Enjoy!
C3, C4, and CAM plants • C3 plants: use CO2 to first make a 3 carbon molecule in the Calvin Cycle (normal photosynthesis plants) • Photorespiration: RuBisco by mistake adds O2 instead of CO2 when conditions are hot, dry, bright • Takes energy to remove O2 and return RuBP for use in Calvin Cycle • Occurs when [CO2] is low and [O2] is high • C4 plants: 1st add CO2 to make a 4 carbon molecule • Special structure: mesophyll cells do light reactions and C4 carbon fixation • PEP carboxylase adds CO2 to PEP to make 4 carbon molecules • 4 carbon molecules go to bundle sheath cells. Bundle sheath cells (around vascular tissue)=specialized for doing Calvin Cycle. Remove CO2 from 4 carbon molecule so it can be used in the Calvin Cycle. ATP recycles PEP& returns it to mesophyll cells • CAM plants: absorb CO2 at night to make an acid, then break that down during the day to provide CO2 for the Calvin Cycle to make glucose (acid metabolism)
Cellular Respiration! • Definition: Breakdown of molecules to gain energy (ATP), catabolism • Equation: C6H12O6 + 6O2 6CO2 + 6H20 + Energy (ATP) • Reverse of photosynthesis • Location: mitochondria (aerobic)/cytoplasm (anaerobic & aerobic)
Type 1: Anaerobic Respiration • Does NOT require O2, occurs in cytoplasm & has two parts • Part 1: Glycolysis: splits glucose to make pyruvate and gets some energy (ATP) • Part 2: Fermentation: allows glycolysis to continue, recycles NADH back to NAD + (does not generate ATP)
Glycolysis (Occurs in the mitochondrial matrix) • 2 ATP added to glucose turns into fructose 1,6-bisphosphate, making it easier to split, can’t diffuse from cell (energy SPENT) • Fructose 1,6-bisphosphate splits forms 2 G3P molecules • 2 Phosphates & NAD+s come in; the NAD+ takes 2 electrons becomes NADH, while P is stuck on, turning each G3P into 1,3-bisphosphoglycerate (1,3-BPG) • 2 1,3-BPG lose 2 P to 2 ADP creates 2 ATP; 2 1,3-BPG become 2,3-phosphoglycerates (3-Pg)
Fermentation • Pyruvate can become CO2, alcohol, lactic acid (humans do lactic acid fermentation when not enough O2 is present, as in heavy exercise) • Net energy gain for anaerobic respiration (glycolysis & fermentation)=2 ATP/glucose
Type 2: Aerobic Respiration • REQUIRES O2, occurs in cytoplasm then mitochondria. • 3 parts: 1) Glycolysis 2) Citric Acid Cycle 3) Electron Transport System
Steps of Citric Acid Cycle: • Pyruvate loses a CO2 and NADH is formed • Coenzyme A combines with C, forming Acetyl-CoA, which immediately combines withoxaloacetate, forming citric acid; Acetyl-CoA falls back off to be recycled • Citric Acid turns into isocitrate, then NAD+ pulls off 2 electrons, turning into NADH; this makes Co2 fall off, forming alpha-ketoglutarate, turning into succinyl-CoA; NADH=formed as CO2 falls off • CoA falls off, forming succinate; some energy from this=used to form GTP (transfers the energy to ATP) • FAD takes 2 electrons from succinate, making FADH2; succinate becomes fumarate • Fumarate becomes malate, which loses 2 electrons to NAD+ creating NADH and re-creating original oxaloacetate (OxesAre Crazy In Kansas. So Should Foxes Marry Oxes?)
ETS/Chemiosmotic (oxidative) photophosphorylation • Uses electrons from NADH and FADH2 to create an H+ gradient for ATP synthesis • Location: cristae of mitochondria (folds in membrane) Steps: • NADH and FADH2 drop off e- on the ETS • e- pair from NADH have enough energy to pump 10 H+ • Electron pair from FADH2 have enough energy to pump 6 H+ • Electrons eventually end up on O2, forming H2O • About every 4 H+ ions, as they go out the ATP synthase channel
ENERGY • ATP created by ETS: 2 NADH (glycolysis) 3 ATP 8 NADH (Kreb’s cycle) 20 ATP 2 FADH2 (Kreb’s cycle) 3 ATP • The net energy gain (for 2 pyruvates/1 glucose): 1 ATP 2 ATP 2 NADH 8 NADH 1 FADH2 2 FADH2 • Energy gain (theoretical) from 1 glucose for aerobic respiration: Glycolysis2 ATP Kreb’s Cycle2 ATP ETS26 ATP TOTAL=30 ATP
Bibliography • Textbook Website in general: CHAPTER 38- Parts of flower, fertilization, male/female gametophytes, hummingbird, double fertilization, seed structure, origin of fruits, and preventing self-fertilization CHAPTER 39- Reception and transduction and response, flowering hormone, and avirulent defense responses http://view.ebookplus.pearsoncmg.com/ebook/launcheText.do?values=bookID::4487::platform::1004::invokeType::lms::launchState::goToEBook::scenarioid::scenario3::logoutplatform::1004::platform::1004::scenario::3::globalBookID::CM81419602::userID::1911037::pageid::::hsid::5434934bda1919e8fb46a13ad18940ba • (Chloroplast)-http://www.google.com/imgres?imgurl=http://www.biologycorner.com/resources/chloroplast_labeled.jpg&imgrefurl=http://www.biologycorner.com/APbiology/cellular/notes_cells2.html&usg=__jt46BLhGK2kXtfsnXvEk_pehTOI=&h=273&w=240&sz=19&hl=en&start=1&zoom=1&tbnid=0GPQ6DgB0MPpSM:&tbnh=113&tbnw=99&ei=OeGWT8acB6rAiQfc4ZWgCg&prev=/search%3Fq%3Dlabeled%2Bchloroplast%26um%3D1%26hl%3Den%26sa%3DN%26gbv%3D2%26tbm%3Disch&um=1&itbs=1
Bibliography Cntd. • (Linear electron flow)- http://www.bio.miami.edu/dana/pix/noncyclic.jpg • (Cyclic electron flow)- http://kvhs.nbed.nb.ca/gallant/biology/cyclic_electron_flow.jpg • (C3 and C4 plant)- http://www.google.com/imgres?q=c3+and+c4+plants&hl=en&biw=1203&bih=629&gbv=2&tbm=isch&tbnid=HVXznDU79kIssM:&imgrefurl=http://www.nature.com/scitable/content/each-plant-species-utilizes-one-of-several-13311179&docid=ST2PXVLQNsCjcM&imgurl=http://www.nature.com/scitable/content/ne0000/ne0000/ne0000/ne0000/13311179/taub_figure2_ksm.jpg&w=500&h=384&ei=sHSdT9fpC8nMiQKx8fBE&zoom=1&iact=hc&vpx=828&vpy=178&dur=661&hovh=197&hovw=256&tx=134&ty=110&sig=112547099696337624223&page=1&tbnh=122&tbnw=159&start=0&ndsp=18&ved=1t:429,r:4,s:0,i:91
Bibliography Cntd. • (CAM plant)- http://www.google.com/imgres?q=c3+and+c4+plants&hl=en&biw=1203&bih=629&gbv=2&tbm=isch&tbnid=5Wn-TnII7WaFSM:&imgrefurl=http://ihatecreataccount.blogspot.com/&docid=u6rKD-Gr1qVHqM&imgurl=http://4.bp.blogspot.com/-8mocbeEDyAE/TfzKBj9B4lI/AAAAAAAAABA/-l-B3ghAZ3s/s1600/C4-and-CAM-plants.jpg&w=614&h=602&ei=sHSdT9fpC8nMiQKx8fBE&zoom=1&iact=hc&vpx=937&vpy=73&dur=383&hovh=222&hovw=227&tx=155&ty=169&sig=112547099696337624223&page=1&tbnh=122&tbnw=124&start=0&ndsp=18&ved=1t:429,r:5,s:0,i:93 • (Mitochondria)-http://www.google.com/imgres?q=mitochondria&num=10&hl=en&gbv=2&biw=1203&bih=629&tbm=isch&tbnid=7G9QL6X6c6JrGM:&imgrefurl=http://micro.magnet.fsu.edu/cells/mitochondria/mitochondria.html&docid=Fzfn06X-Mo1mlM&imgurl=http://micro.magnet.fsu.edu/cells/mitochondria/images/mitochondriafigure1.jpg&w=296&h=312&ei=93SdT6maF9PbiALUtPRg&zoom=1&iact=rc&dur=403&sig=112547099696337624223&sqi=2&page=1&tbnh=124&tbnw=118&start=0&ndsp=19&ved=1t:429,r:1,s:0,i:109&tx=45&ty=26
Bibliography Cntd. • (Calvin Cycle)- http://www.emc.maricopa.edu/faculty/farabee/biobk/alcferm.gif • (Fermentation)- http://galvez-808.cghub.com/files/Image/086001-087000/86629/095_stream.jpg • (Sun)-http://www.google.com/imgres?q=the+sun&um=1&hl=en&sa=N&biw=1203&bih=629&tbm=isch&tbnid=eRnRauaHGhZV4M:&imgrefurl=http://www.bobthealien.co.uk/sun.htm&docid=2Zh8xL_2UaBKCM&imgurl=http://www.bobthealien.co.uk/sunmain2.png&w=320&h=320&ei=l4udT72rDqGSiQKrn7x4&zoom=1&iact=rc&dur=205&sig=112547099696337624223&page=1&tbnh=125&tbnw=124&start=0&ndsp=21&ved=1t:429,r:12,s:0,i:160&tx=94&ty=74
Bib Cntd. • (Tomato)- http://www.google.com/imgres?q=tomatoes&um=1&hl=en&sa=N&biw=1203&bih=629&tbm=isch&tbnid=-DcjM3eIeLrVNM:&imgrefurl=http://www.bewellbuzz.com/general/what-you-didnt-know-about-tomatoes/&docid=rci-XKvrxbp8xM&imgurl=http://cdn.bewellbuzz.com/wpcontent/uploads/2009/06/tomatoes=293x300.jpg&w=293&h=300&ei=Bo2dT6PfLsjhiAKH3OmkAQ&zoom=1&iact=hc&vpx=672&vpy=168&dur=233&hovh=227&hovw=222&tx=128&ty=73&sig=112547099696337624223&page=1&tbnh=132&tbnw=129&start=0&ndsp=20&ved=1t:429,r:4,s:0,i:143 • (Reception, transduction, response)- http://view.ebookplus.pearsoncmg.com/ebook/launcheText.do?values=bookID::4487::platform::1004::invokeType::lms::launchState::goToEBook::scenarioid::scenario3::logoutplatform::1004::platform::1004::scenario::3::globalBookID::CM81419602::userID::1911037::pageid::::hsid::5434934bda1919e8fb46a13ad18940ba
Bib Cntd. • (Gravitropism leaf)-http://www.google.com/imgres?q=gravitropism&hl=en&gbv=2&biw=1203&bih=651&tbm=isch&tbnid=DyjaGkCPk7oHBM:&imgrefurl=http://herbarium.desu.edu/pfk/page8/page9/page9.html&docid=zfQ1M6RevvnjYM&imgurl=http://herbarium.desu.edu/pfk/page8/page9/files/page9_1.jpg&w=301&h=265&ei=QS6eT-4G5JqIAuyF-Hg&zoom=1&iact=rc&dur=488&sig=112547099696337624223&page=1&tbnh=145&tbnw=165&start=0&ndsp=19&ved=1t:429,r:3,s:0,i:76&tx=104&ty=67 • (Herbivore)- http://www.google.com/imgres?q=herbivores&um=1&hl=en&sa=N&biw=1203&bih=629&tbm=isch&tbnid=NcMGzieuixaetM:&imgrefurl=http://www.qrg.northwestern.edu/projects/marssim/simhtml/info/whats-a-herbivore.html&docid=4j8edxN7tTtbCM&imgurl=http://www.qrg.northwestern.edu/projects/marssim/simhtml/pics-for-sim/pronghorn.jpg&w=215&h=198&ei=FC-eT8-DKeSpiALYyeCcAQ&zoom=1&iact=rc&dur=291&sig=112547099696337624223&page=1&tbnh=125&tbnw=123&start=0&ndsp=20&ved=1t:429,r:0,s:0,i:135&tx=86&ty=40
Bib Cntd. • (Grafting)-http://www.google.com/imgres?q=grafting+of+plants&num=10&um=1&hl=en&biw=1203&bih=651&tbm=isch&tbnid=oSjdfEPHjhuwiM:&imgrefurl=http://anpsa.org.au/grafting.html&docid=O4TojW7M8_dPMM&imgurl=http://anpsa.org.au/gif/grafta.gif&w=261&h=341&ei=ryKeT4KNJ4-NigLBqMWZAQ&zoom=1&iact=rc&dur=382&sig=112547099696337624223&sqi=2&page=1&tbnh=133&tbnw=102&start=0&ndsp=21&ved=1t:429,r:8,s:0,i:84&tx=63&ty=44 • (Pathogen)- http://www.google.com/imgres?q=pathogen&um=1&hl=en&sa=N&biw=1203&bih=629&tbm=isch&tbnid=v2OabBWgeetIRM:&imgrefurl=http://www.beltina.org/health-dictionary/pathogen-definition-what-is.html&docid=LpmLvh6jzfJ3dM&imgurl=http://www.beltina.org/pics/pathogen.jpg&w=291&h=284&ei=YC-eT7v9D8muiAL9wtCiAQ&zoom=1&iact=hc&vpx=112&vpy=167&dur=740&hovh=222&hovw=227&tx=140&ty=135&sig=112547099696337624223&page=1&tbnh=126&tbnw=130&start=0&ndsp=21&ved=1t:429,r:0,s:0,i:135
Bib Cntd. • (Hypersensitive response leaf)-http://www.google.com/imgres?q=hypersensitive+response&um=1&hl=en&sa=N&biw=1002&bih=524&tbm=isch&tbnid=6osVRRAmmlx0tM:&imgrefurl=http://www.sidthomas.net/SenEssence/Development/devexamples.htm&docid=0hSHRJW6boWvbM&imgurl=http://www.sidthomas.net/images/hypersensitive.jpg&w=400&h=300&ei=3DOeT8PmGYSXiALWtKCeAQ&zoom=1&iact=rc&dur=483&sig=112547099696337624223&page=1&tbnh=159&tbnw=218&start=0&ndsp=8&ved=1t:429,r:1,s:0,i:71&tx=126&ty=59