310 likes | 523 Views
PROPORCIONALIDAD. Y. FUNCIONES LINEALES. NOCIÓN DE FUNCIÓN. Laura compró 2 cuadernos iguales pagando $11.90; cuando llegó a su casa se dió cuenta que le había faltado comprar uno más. ¿Cuánto tendrá que pagar por él? ¿Y si compra 3?. 11.90/2.
E N D
PROPORCIONALIDAD Y FUNCIONES LINEALES
NOCIÓN DE FUNCIÓN Laura compró 2 cuadernos iguales pagando $11.90; cuando llegó a su casa se dió cuenta que le había faltado comprar uno más. ¿Cuánto tendrá que pagar por él? ¿Y si compra 3? 11.90/2
En la vida diaria existen muchas situaciones similares en las que hay relaciones entre 2 cantidades. En el caso anterior: cantidad de cuadernos y costo.
Esto lo podemos representar mediante una tabla: Una relación como la anterior recibe el nombre de FUNCIÓN.
Una función puede ser representada con: * una tabla * una gráfica y = 2x + 3 * una expresión algebraica También se puede obtener con la calculadora
Esto significa que varían en la misma proporción, es decir, si una de las cantidades aumenta, la otra también; y si una disminuye, la otra también lo hace.
Habrás observado que existe una relación muy estrecha entre el Costo y la Cantidad de cuadernos a comprar: 2 cuadernos cuestan $11.90, un cuaderno costaría la mitad, $5.95; 3 cuadernos costarían el triple, $17.85. Diremos entonces que estas 2 cantidades son: Proporcionales
y = 5.95 X Siguiendo con el ejemplo anterior, la gráfica correspondiente se muestra a continuación: 17.85 Precio 11.90 5.95 Cuadernos costo total Y = y su expresión sería costo de un cuaderno 5.95 = X = cantidad de cuadernos
Además el cociente entre las dos cantidades siempre es constante: Una igualdad de 2 razones se llama Proporción, y el cociente de las razones de una proporción se le llama Constante o Razón de Proporcionalidad.
EJERCICIO Se necesita calcular el perímetro de 5 cuadrados cuyas medidas por lado son: 2.5, 3.4, 5.2, 7.6 y 9 cm., respectivamente.
1.- ¿Cuál es la función que corresponde a este problema? a) Y = 5 · X b) Y = 5 · X² c) Y = 4 · X² d) Y = 4 · X
¡ Casi le atinas ! Observa bien, recuerda que el valor de "Y" es 4 veces el de "X" Haz < clic > en la flecha
¡ Huy, ahora estás más lejos ! Observa bien, ¿Se calcula perímetro o área? Si es necesario vuelve a leer el problema. Haz < clic > en la flecha
¡ Te vas acercando ! Si es necesario vuelve a leer el problema. Haz < clic > en la flecha
La función es Y = 4 X porque para encontrar el perímetro de un cuadrado multiplicamos la medida de un lado por 4, que son los lados iguales que tiene esta figura. ¡ Muy bien hecho ! Haz < clic > en la flecha
2.- ¿Cuál de las siguientes gráficas corresponde a la función? Haz <clic> sobre la gráfica correcta (a) (b) (c) (d)
¡ Estas cerca ! Observa bien, recuerda cómo se localizan las parejas ordenadas. Haz < clic > en la flecha
¡ Te vas acercando ! Si es necesario vuelve a leer el problema. Haz < clic > en la flecha
¡Te estás alejando ! Observa bien y piensa un poquito. Haz < clic > en la flecha
¡ Te vas acercando! Observa bien, las "equis" se localizan en el eje horizontal y las "Y" en el vertical. Haz < clic > en la flecha
Si la función es Y = 4 X, entonces los valores de Y son: ¡ Qué bien ! Haz < clic > en la flecha
3.- ¿Qué valores hacen falta para completar la tabla de acuerdo al problema anterior? Haz <clic> sobre la respuesta correcta a) 1.0, 3.4, 20.8, 30.4, 9 b) 10,13.4, 20.8, 30.4, 9 c) 10, 3.4, 20.8, 30.4, 9 d) 10, 3.4, 20.8, 30.6, 9
¿Ya te fijaste bien? Haz < clic > en la flecha
Si la función es Y = 4 X, entonces los valores que hacen falta son : ¡ Muy bien hecho ! Haz < clic > en la flecha
Un reto a tu intelecto La siguiente tabla muestra los valores de X y de Y. X es proporcional a Y. ¿Cuáles son los valores de m y n que faltan? a) m = 14, n= 31 b) m = 15, n= 14 d) m = 10, n= 31 c) m = 14, n= 15 e) m = 31, n= 10
¡ Recuerda ! "X" y "Y" son PROPORCIONALES Haz < clic > en la flecha
¡ Felicidades ! ¡ Ahora ya sabes cómo funcionan las proporciones ! Haz < clic > en la flecha