1 / 52

(11) Science concepts. The student understands the energy changes that occur in chemical reactions. The student is expec

(11) Science concepts. The student understands the energy changes that occur in chemical reactions. The student is expected to: (A) understand energy and its forms, including kinetic, potential, chemical, and thermal energies;

nysa
Download Presentation

(11) Science concepts. The student understands the energy changes that occur in chemical reactions. The student is expec

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. (11) Science concepts. The student understands the energy changes that occur in chemical reactions. The student is expected to: (A) understand energy and its forms, including kinetic, potential, chemical, and thermal energies; (B) understand the law of conservation of energy and the processes of heat transfer; (C) use thermochemical equations to calculate energy changes that occur in chemical reactions and classify reactions as exothermic or endothermic; (D) perform calculations involving heat, mass, temperature change, and specific heat; and (E) use calorimetry to calculate the heat of a chemical process.

  2. Ch. 16 Energy and Chemical Change

  3. 16.1 Energy • Energy- the ability to do work or produce heat • 2 Forms: • Potential Energy • Kinetic Energy

  4. Potential Energy • Potential Energy -energy due to the composition or position of an object. • Ex: water stored behind a dam • depends on composition: • 1. the type of atoms • 2. the number and type of chemical bonds joining the atoms • 3. the way the atoms are arranged.

  5. Kinetic Energy • Kinetic Energy – is the energy of motion • Ex: water flows from the dam

  6. Chemical systems contain both potential and kinetic energy Potential Kinetic

  7. Heat- represented by symbol Q- energy that is in the process of flowing from a warmer object to a cooler object

  8. Chemical Potential Energy - the energy stored in a substance because of its composition. Composition is the type, number, and arrangement of atoms and bonds.

  9. Thermal energy • the energy created by moving particles inside a substance. • more movement of particles = more thermal energy

  10. Heat is Thermal energy that is transferred Heat is Transferred in 3 ways • Conduction – the way heat moves through solids. (direct transfer) Vibrating molecules pass on heat from molecule to molecule.

  11. Convection – the way heat moves through gases and liquids. Heated molecules move AWAY from the heat and cooler molecules take their place. Ex: Hot air rises and cool air sinks

  12. Radiation • Radiation – the way heat moves through empty space. Does not need atoms or molecules to work. • Electromagnetic radiation – light and heat from the sun, visible light, microwaves, X-rays, etc.

  13. Forms of Energy

  14. Wednesday

  15. Phase Changes • http://www.youtube.com/watch?feature=player_embedded&v=YG77v1PwQNM

  16. Specific Heat–is the amount of heat required to raise the temperature of one gram of that substance by one degree Celsius. • each substance has its own specific heat • Table 16-2 pg 492

  17. Heat of Vaporization • The amount of heat required to convert unit mass of a liquid into the vapor without a change in temperature.

  18. Heat of Fusion • The amount of heat required to convert unit mass of a solid into the liquid without a change in temperature.

  19. Measuring HEAT!!!

  20. Two units for measuring heat • calorie -the amount of heat required to raise the temperature of one gram of pure water by one degree Celsius • Joule - SI unit of heat and energy

  21. 1 calorie = 4.184 joules • 1000 calorie = 1 Calorie • 1J = 0.2390 calories • Table 16-1 Conversion factors and relationships pg 491

  22. Calories are nutritional or food Calories • 1 Calorie = 1000 calories • 1Calorie = 1 kilocalorie • approximates the energy needed to increase the temperature of 1 kilogram of water by 1 °C.

  23. Calculating Specific Heat Q= m x c x ΔT • Q= heat absorbed or released • m = mass of the sample in grams • c = specific heat of the substance • ΔT = difference between final temperature and initial temperature, or Tfinal- Tinitial

  24. 16.2 Heat in Chemical Reactions and Processes • Measuring Heat • Heat changes are measured with a calorimeter

  25. Lab and worksheet The temperature of a sample of iron has a mass of 10.0g changed from 50.4oC to 25.0oC with the release of 114 J of heat. What is the specific heat of iron? Q = mc∆T 114 = 10 x c x (50.4-25) 114 = 254c C = 114/254 = 0.449 J/goC

  26. Calorimeter – an insulated device used for measuring the amount of heat absorbed or released during a chemical or physical process. • Data is the change in temperature of this mass of the substance.

  27. Determining Specific Heat • Place a hot metal into water. • Heat flows from the hot metal to the cooler water until the temperature of the metal and water are equal. • The heat gained by the water is equal to the heat lost by the metal

  28. Calculating Heat Example 125 g water with an Initial temperature of 25.60C 50 g metal at 1150C is placed in the water. Heat flows from the hot metal to the cooler water until the temperature of the metal and water are equal. Both have a final temperature of 29.3 0C. Calculate the Heat gained by the water. Example Part A: q = c x m x /\T q water = 4.184 J/(g x0C) x 125 g x (29.30C – 25.60C) q water = 4.184 J/(g x0C) x 125 g X 3.7 0C q water = 1900 J

  29. Calculating Specific Heat • Example • 50 g metal at 1150C is placed in the water. • Heat flows from the hot metal to the cooler water until the temperature of the metal and water are equal. Both have a final temperature of 29.3 0C. • Water absorbed 1900 J of heat. • Example Part B: Calculate the Specific Heat of the Metal • c = q___ m x /\T • c metal = 1900 J m x /\T • c metal = _______1900 J_________ (50.0 g)(1150C – 29.3 0C) • c metal = ____1900 J_____ (50.0 g)(85.700C) • c metal = 0.44 J/(g x 0C) specific heat of the metal • Look at pg 492 at the table. What is this metal?

  30. Thursday- Lab

  31. Friday- Practice worksheet

  32. Monday

  33. 16.3 and 16.4 Enthalpy and Enthalpy Changes • Enthalpy- (H) the heat content of a system at a constant pressure

  34. A thermochemical equation is a balanced chemical equation that includes the physical states of all reactants and products and the energy change expressed as the change in enthalpy, ∆H.

  35. You can’t measure actual enthalpy, but you can measure change in enthalpy, which is called enthalpy (heat) of reaction (ΔH rxn) • Use the table on pg. 510 in your textbook • ΔH rxn = H final – H initial or • ΔH rxn = H products – H reactants • Example: • What is the heat of reaction for the following reaction? H2S + 4F2 2HF + SF6

  36. Endothermic Reaction • If the ∆H is shown on the reactants side, it is endothermic (gaining energy) • The heat of the reaction will be positive. • (energy) 27 kJ + NH4NO3  NH4 + NO3 • NH4NO3 NH4 + NO3ΔH = +27 kJ • Energy required to break the bonds in a reactant is less than released after the bonds in the product is formed

  37. Exothermic Reaction • If the ∆H is shown on the products side, it is exothermic (losing energy) • The heat of the reaction will be negative. • 4 Fe + 3O2 2 Fe2O3 + 1625 kJ (energy) • 4 Fe + 3O2 2 Fe2O3ΔH = -1625 kJ • Energy needed to break the bond in the reactant is more than energy released after the bonds in the products are formed • http://www.youtube.com/watch?v=ksN-t2mmpvM&feature=related

  38. END

  39. Sign of the Enthalpy of Reaction • Exothermic reactions have a negative enthalpy • Hproducts< Hreactants • Endothermic reactions have a positive enthalpy • Hproducts> Hreactants

  40. 16.3 Thermochemical Equations • Enthalpy (heat) of combustion- enthalpy change for the complete burning of one mole of the substance • ΔHcomb

  41. Entropy • Measure of the disorder or randomness of the particles that make up a system • Symbolized by S

  42. Molar Enthalpy (heat) of Vaporization • Heat required to vaporize one mole of a liquid • ΔHvap • Endothermic (positive enthalpy)

  43. Molar Enthalpy (heat) of Fusion • The heat required to melt one mole of a solid substance • ΔHfus • Endothermic (positive enthalpy)

  44. 16.5 Reaction Spontaneity • Spontaneous process- physical or chemical change that occurs with no outside intervention

  45. Law of Disorder • States that spontaneous processes always proceed in such a way that the entropy of the universe increases

  46. Chemical Energy and the Universe • Thermochemistry – the study of heat changes that accompany chemical reactions and phase changes.

  47. system – the specific part of the universe that contains the reaction or process you wish to study. • surroundings – everything in the universe other than the system

  48. universe – the system plus the surroundings • universe = system + surroundings

More Related