550 likes | 1.03k Views
Rachunek prawdopodobieństwa 1. Materiały pomocnicze do wykładu. uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 2 wykładowca: dr Magdalena Kacprzak data: grudzień 2009. Przestrzeń zdarzeń elementarnych. Definicje. Pojedyncze wyniki doświadczenia losowego
E N D
Rachunek prawdopodobieństwa 1 Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 2 wykładowca: dr Magdalena Kacprzak data: grudzień 2009
Przestrzeń zdarzeń elementarnych
Definicje Pojedyncze wyniki doświadczenia losowego nazywamy zdarzeniami elementarnymi. Zbiór wszystkich zdarzeń elementarnych odpowiadających pewnemu doświadczeniu tworzy przestrzeń zdarzeń elementarnych, którą oznaczamy symbolemW.
Przykład Ustal przestrzeń zdarzeń elementarnych i jej moc • Zdarzenie polega na rzucie dwiema kostkami do gry • Zdarzenie polega na rzucie trzema monetami W={(1,1), (1,2), (1,3), ... , (2,1), (2,2), (2,3), ... , (6,6)} | W | = 66=36 W = {(o,o,o), (o,o,r), (o,r,o),...,(r,r,r) } | W | = 66=36
Przykład c.d. Ocena końcowa pewnego przedmiotu zależy od liczby punktów uzyskanych na dwóch sprawdzianach i na egzaminie. Na każdym sprawdzianie można uzyskać co najwyżej 20 punktów, a na egzaminie co najwyżej 60. W ={(x,y,z)Î N3: x £ 20, y £ 20, z £ 60}. | W| =2121 61
Definicja NiechWbędzie przestrzenią zdarzeń elementarnych. Dowolny podzbiór A przestrzeni zdarzeń elementarnych nazywamy zdarzeniem. Powiemy, że zaszło zdarzenie A, jeśli wynikiem doświadczenia jest zdarzenie elementarne należące do A.
Przykład 1 Doświadczenie polega na rzucie dwiema rozróżnialnymi kostkami sześciennymi do gry. Wówczas W = {(i,j) : i, j = 1, 2, ...6}. Wypisz wszystkie wyniki sprzyjające każdemu z poniższych zdarzeń (a) Zdarzenie A = "suma oczek na obu kostkach wynosi 7". A={(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)} |A|=6
Przykład 1 (b) Zdarzenie B = "suma oczek na obu kostkach wynosi nie więcej niż 12". (c) Zdarzenie C = "suma oczek na obu kostkach wynosi 1". Jest to zdarzeniem pewnym, bo każde zdarzenie elementarne ma tę własność. Jest to zdarzeniem niemożliwe, bo na każdej kostce musimy wyrzucić co najmniej jedno oczko, co w sumie daje co najmniej dwa oczka.
Przykład 2 Rozważmy doświadczenie z przykładu 1. Ile zdarzeń elementarnych sprzyja zdarzeniu F-"liczba oczek na pierwszej kostce jest dzielnikiem liczby oczek na drugiej kostce"? F={(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4), (2,6), (3,3), (3,6), (4,4), (5,5), (6,6)} |F|=14
Zdarzenia identyczne Na zdarzeniach wykonujemy takie same operacje jak na zbiorach. Powiemy, że dwa zdarzenia w pewnej przestrzeni zdarzeń elementarnych W są identyczne, jeśli mają te same zbiory sprzyjających zdarzeń elementarnych.
Suma zdarzeń Sumą zdarzeń A i B nazywamy zdarzenie AB, któremu sprzyjają wszystkie zdarzenia elementarne sprzyjające zdarzeniu A lub zdarzeniu B.
Iloczyn zdarzeń Iloczynem zdarzeń A i B nazywamy zdarzenie AÇB, któremu sprzyjają zdarzenia elementarne sprzyjające zdarzeniu A i zdarzeniu B.
Zdarzenia przeciwne i wykluczające się Zdarzenie A'=W\A nazywamy zdarzeniem przeciwnym do zdarzenia A. Zdarzeniu A' sprzyjają tylko te zdarzenia elementarne rozważanej przestrzeni, które nie należą do A. Powiemy, że dwa zdarzenia A i B wykluczają się(albo są rozłączne) wtedy i tylko wtedy, gdy AÇB=Æ.
Przykład 1 Doświadczenie polega na rzucie dwiema rozróżnialnymi kostkami sześciennymi do gry. Zdarzenie A - "suma oczek na obu kostkach wynosi 7". Zdarzenie D –"co najmniej raz wyrzucono 5". Wyznacz Iloczyn zdarzeń A i D oraz zdarzenie przeciwne do zdarzenia D. A={(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)}, D={(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (1,5), (2,5), (3,5), (4,5), (6,5)} AD={(2,5), (5,2)}, |AD|=2 D’={(1,1), (1,2),...,(1,4), (1,6),...(6,6)}, |D’|=25
Przykład 2 Niech będzie urna z 52 kartami. Rozważamy doświadczenie polegające na wylosowaniu kolejno 2 kart, z tym, że po wylosowaniu karty wkładamy ją znów do urny (losowanie ze zwracaniem). Zdarzenia A - "wylosowano za każdym razem asa" i B = "za drugim razem wylosowano dziesiątkę" są zdarzeniami wyłączającymi się. Nie ma takich zdarzeń elementarnych, które sprzyjają równocześnie obu zdarzeniom. Natomiast zdarzenie, które jest sumą zdarzeń A i B ma ????????? zdarzeń sprzyjających.
Przykład 2 Niech będzie urna z 52 kartami. Rozważamy doświadczenie polegające na wylosowaniu kolejno 2 kart, z tym, że po wylosowaniu karty wkładamy ją znów do urny (losowanie ze zwracaniem). Zdarzenia A - "wylosowano za każdym razem asa" i B = "za drugim razem wylosowano dziesiątkę" są zdarzeniami wyłączającymi się. Nie ma takich zdarzeń elementarnych, które sprzyjają równocześnie obu zdarzeniom. Natomiast zdarzenie, które jest sumą zdarzeń A i B ma 44+524 zdarzeń sprzyjających.
Definicja (Kołmogorow 1933) NiechWoznacza skończoną przestrzeń zdarzeń elementarnych. Prawdopodobieństwem nazywamy funkcję P określoną na zdarzeniach taką, że (1) P(A) ³0 dla dowolnego zdarzenia A, (2) P(AÈB) = P(A) + P(B) dla dowolnych, wykluczających się zdarzeń A, B (3) P(W) = 1. Wniosek: 0P(A)1
Lemat Jeżeli zdarzenia A1, A2, ..., An, określone w pewnej przestrzeni zdarzeń elementarnych W, wykluczają się parami, to P(A1È...ÈAn)=P(A1)+P(A2)+...+P(An).
Twierdzenie Prawdopodobieństwo zdarzenia A ÍWjest ilorazem liczby zdarzeń elementarnych sprzyjających zdarzeniu A i liczby zdarzeń elementarnych rozważanej skończonej przestrzeniW, o ile zdarzenia elementarne są tak samo prawdopodobne, tzn. Wzór zawarty w powyższym twierdzeniu nazywa się klasyczną definicją prawdopodobieństwa, a został on sformułowany przez Laplace'a.
Przykład 1 Rzucamy 10 razy monetą. Jakie jest prawdopodobieństwo, że w dziesięciu rzutach dokładnie 4 razy pojawi się orzeł?
Przykład 1 Rzucamy 10 razy monetą. Jakie jest prawdopodobieństwo, że w dziesięciu rzutach dokładnie 4 razy pojawi się orzeł? || = 210=1024 |A| = = 210 P(A) = 210/1024
Własności prawdopodobieństwa NiechWbędzie przestrzenią zdarzeń elementarnych, a A i B dowolnymi zdarzeniami. Wtedy • P(Æ) = 0, • jeżeli A Í B, to P(A) £ P(B), • dla każdego A ÍW, P(A) £ 1, • P(A') =1 - P(A), • P(A È B) = P(A) + P(B) - P(A Ç B).
Dowód (a) Ponieważ prawdopodobieństwo zdarzenia pewnego wynosi 1, a zdarzenie puste wyklucza się ze zdarzeniem pewnym, zatem P(Æ) + P(W) = P(ÆÈW) = P(W) = 1. Czyli musi być P(Æ) = 0. (b) Jeżeli A Í B, to B = (B\A) È A oraz (B\A) Ç A = Æ. W konsekwencji definicji prawdopodobieństwa mamy P(B) = P((B\A) È A ) = P(B\A) + P(A). Ponieważ P(A) ³ 0 i P(B\A) ³ 0, zatem P(A) £ P(B). (c) Natychmiastowa konsekwencja punktu (b) i definicji prawdopodobieństwa.
Dowód c.d. (d) Ponieważ 1 = P(W) = P(A È A') = P(A) + P(A'), więc P(A') =1 - P(A). (e) Z praw teorii mnogości, dla dowolnych zbiorów A i B mamy A È B = A È B\A = B\A È A\B oraz A Ç B\A = Æ , B\A Ç A\B = Æ. Wynika stąd, na mocy definicji prawdopodobieństwa, że P(AÈB)=P(A)+P(B\A), P(B)=P(B\A)+P(AÇB). Stąd P(AÈB)=P(A)+P(B)- P(AÇB).
Przykład 1 Rozpatrzymy ilość (dm3) wody jaką może mieć do przeprowadzenia w ciągu sekundy betonowy przepust. Dotychczasowe obserwacje pozwalają przyjąć, że • maksymalna możliwa ilośc wody wynosi 300 dm3/s. • P(A) – prawdopodobieństwo, że ilość wody (na sekundę) przyjmie wartość z przedziału (125,250] wynosi 0,6, • P(B) - prawdopodobieństwo, że ilość wody (na sekundę) przyjmie wartość z przedziału (200,300] wynosi 0,7 oraz • P(AB)=0,8. Obliczyć P(A’), P(AB), P(A’B’), P(A’B).
Przykład 1 • P(A’)=1-0,6=0,4 • P(AB)=P(A)+P(B)-P(AB)=0,6+0,7-0,8=0,5 • P(A’B’)=P((AB)’)=1-P(AB)=1-0,8=0,2 • P(A’B)=P(A\B)=P(A)-P(AB)=0,7-0,5=0,2
Przykład 2 Udowodnij, że P(A\B)P(A)-P(B). Dowód: Najpierw zauważmy, że ABB. Zatem P(AB)P(B). Stąd -P(AB) -P(B). Teraz mamy: P(A\B)=P(A-(AB))=P(A)-P(AB) P(A)-P(B).
Prawdopodobieństwo warunkowe
Definicja Prawdopodobieństwo zajścia zdarzenia A pod warunkiem, że zaszło zdarzenie B, oznaczane P(A|B), wyraża się wzorem: P(A|B) = P(AÇB)/P(B) o ile P(B)>0.
Przykład Z talii 52 kart losujemy 5 kart. Oblicz prawdopodobieństwo wylosowania 2 kierów, jeżeli wiadomo, że wśród wylosowanych kart nie ma kolorów pik i trefl. A - zdarzenie polegające na wylosowaniu 2 kierów, B - zdarzenie polegające na wylosowaniu kart wśród których nie ma kolorów pik i trefl
Definicja Zdarzenia A i B nazywamy niezależnymi, jeśli prawdopodobieństwo iloczynu zdarzeń jest równe iloczynowi prawdopodobieństw tych zdarzeń P(AÇB) = P(A)P(B).
Definicja Niech będzie dany ciąg zdarzeń losowych A1,...,An w pewnej przestrzeniW. Powiemy, że zdarzenia te są niezależne wtedy i tylko wtedy, gdy dla dowolnego podciągu i1,..., ik ciągu 1,...,n, P(A i1Ç ... Ç A ik) = P(A i1) ... P(A ik).
Lemat Jeżeli zdarzenia A i B są niezależne, to zdarzenia A i B' też są niezależne.
Przykład-zadanie Bernsteina 3 ściany czworościanu zostały pomalowane na biało, czerwono i zielono, zaś czwarta – w pasy biało-czerwono- zielone. Doświadczenie polega na rzucaniu czworościanu na płaszczyznę i obserwowaniu koloru ściany, na którą upadł czworościan. Zdarzenia B, C, Z określone są następująco: B – czworościan upadł na ścianę z kolorem białym, C – czworościan upadł na ścianę z kolorem czerwonym, Z – czworościan upadł na ścianę z kolorem zielonym. Zbadać, czy zdarzenia B, C, Z są (a) niezależne parami, (b) niezależne wzajemnie.
Przykład-zadanie Bernsteina P(B)=2/4, P(C)=2/4, P(Z)=2/4 P(BC)= P(BZ)=P(CZ)=1/4 (a) P(BC)=1/4, P(B) P(C) = 2/4 2/4 = 1/4, stąd P(BC) = P(B) P(C), czyli zdarzenia B i C są niezależne. Podobnie dla zdarzeń B i Z oraz C i Z. (b) P(BCZ) = 1/4, P(B)P(C)P(Z) =1/2 1/2 1/2=1/8, stąd P(BC) P(B) P(C) P(Z), czyli zdarzenia B,C i Z nie są niezależne.
Prawdopodobieństwo całkowite
Twierdzenie Jeżeli zdarzenia losowe A1,..., An stanowią podział przestrzeni zdarzeń elementarnychW, oraz P(Ai)>0, dla i =1,2...n to dla dowolnego zdarzenia B w tej przestrzeni zachodzi równość: P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+...+P(An)P(B|An).
Twierdzenie Niech zdarzenia losowe A1,...An stanowią podział przestrzeni zdarzeń elementarnychW, oraz P(Ai)>0 dla i =1,2...n. Wtedy dla dowolnego zdarzenia B zachodzi wzór, zwany wzorem Bayesa: P(B|Ai)P(Ai) P(Ai|B) = P(A1)P(B|A1)+P(A2)P(B|A2)+...+P(An)P(B|An)
Przykład Kanałem łączności nadaje się tylko 3 rodzaje ciągów liter AAAA, BBBB, CCCC odpowiednio z prawdopodobieństwami 0,4; 0,3; 0,3. Wysyłane sygnały kodujące litery podlegają niezależnie losowym zakłóceniom. Prawdopodobieństwo poprawnego przesłania albo zakłócenia podaje tabela. (a) Znaleźć p-d odebrania na wyjściu sygnału ACAA . (b) Na wyjściu odebrano sygnał ACAA. Obliczyć prawdopodobieństwo, że został on nadany jako AAAA. S y g n a ł o d e b r a n y s y g n a ł n a d a n y
Przykład (a) (b) 0,4 0,3 0,3 AAAA BBBB CCCC (0,8)30,1 (0,1)4 0,8 (0,1)3 ACAA ACAA ACAA
Definicja Niech D będzie pewnym doświadczeniem, w wyniku którego może zajść zdarzenie A lub zdarzenie przeciwne A'. Schematem Bernoulliego nazywamy serię n niezależnych powtórzeń tego samego doświadczenia D, dla pewnego nÎN. Wykonanie kolejnego doświadczenia D nazywa się próbą. Zajście zdarzenia A nazywa się sukcesem, a zajście zdarzenia A' - porażką.
Twierdzenie W schemacie Bernoulliego o n próbach prawdopodobieństwo otrzymania dokładnie k sukcesów jest równe gdzie k=0,1,2,...,n; n1 oraz p jest prawdopodobieństwem sukcesu w jednej próbie.
Przykład Jeżeli przeciętnie 5 dni w ciągu tygodnia jest deszczowych, to jak duże jest p-d, że 2 spośród 3 dni będą pogodne?