1 / 25

MANUAL DE LABORATORIO DE CÓMPUTO ECONOMETRÍA I MODELO DE REGRESIÓN GENERAL

UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS DEPARTAMENTO ACADÉMICO DE CIENCIAS ECONÓMICAS. MANUAL DE LABORATORIO DE CÓMPUTO ECONOMETRÍA I MODELO DE REGRESIÓN GENERAL. Profesor: Barland A. Huamán Bravo 2011. ESQUEMA.

ophrah
Download Presentation

MANUAL DE LABORATORIO DE CÓMPUTO ECONOMETRÍA I MODELO DE REGRESIÓN GENERAL

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. UNIVERSIDAD NACIONAL AGRARIA DE LA SELVA FACULTAD DE CIENCIAS ECONÓMICAS Y ADMINISTRATIVAS DEPARTAMENTO ACADÉMICO DE CIENCIAS ECONÓMICAS MANUAL DE LABORATORIO DE CÓMPUTOECONOMETRÍA IMODELO DE REGRESIÓN GENERAL Profesor: Barland A. Huamán Bravo 2011

  2. ESQUEMA • FUNCIÓN DE DENSIDAD NORMAL Y REGRESIÓN. • EL MODELO DE REGRESIÓN SIMPLE • EL TÉRMINO DE PERTURBACIÓN • LOS SUPUESTOS CLÁSICOS

  3. 1. FUNCIÓN DE DENSIDAD NORMAL Y REGRESIÓN • Sea la función de densidad conjunta normal bivariada • Funciones de densidad de probabilidad marginal:

  4. 1. FUNCIÓN DE DENSIDAD NORMAL Y REGRESIÓN • La función de densidad condicional de Y dado X: • Media y Varianza Condicionales:

  5. 2. MODELO DE REGRESIÓN SIMPLE • El Modelo de regresión simple: • y=variable dependiente, regresando, explicada, variable del lado izquierdo (left-hand-side variable). • x = variable independiente, regresor, explicativa, variables del lado derecho (right-hand-side variable). • Término de perturbación:

  6. 2. MODELO DE REGRESIÓN SIMPLE

  7. 2. MODELO DE REGRESIÓN SIMPLE • Las relaciones entre las variables x e y pueden ser: positivas o negativas

  8. 2. MODELO DE REGRESIÓN SIMPLE CAUSALIDAD EN EL MODELO DE REGRESIÓN LINEAL • Es importante tener en cuenta que un modelo de regresión no implica la existencia de causalidad entre las variables. • La causalidad - si existiera - estará determinada por la teoría económica y reforzada por pruebas estadísticas adecuadas.

  9. 2. MODELO DE REGRESIÓN SIMPLE • La teoría económica analiza las relaciones entre variables a través de modelos. Las relaciones pueden ser uniecuacionales o multiecuacionales, bivariadas o multivariadas. • Además, las relaciones económicas pueden modelarse como relaciones determinísticas o relaciones estocásticas. donde g(Y) es la función esperanza condicional o regresión.

  10. 2. MODELO DE REGRESIÓN SIMPLE

  11. 3. TÉRMINO DE PERTURBACIÓN O ERROR Definición • Denominado término estocástico. • La palabra estocástico proviene del griego stokhos que significa objetivo o blanco de una ruleta: • Una relación estocástica es una relación que no siempre da en el blanco. • Así, el término de perturbación mide los errores o fallas de la relación determinística:

  12. 3. TÉRMINO DE PERTURBACIÓN O ERROR • La presencia del término de perturbación se justifica por los siguientes argumentos (no mutuamente excluyentes): • Omisión de la influencia de eventos sistemáticos, muy importantes y poco importantes para la relación. • Omisión de la influencia de innumerables eventos no sistemáticos, muy importantes y poco importantes para la relación. • Error de medida de las variables utilizadas. • Aleatoriedad del comportamiento humano ante situaciones similares.

  13. 3. TÉRMINO DE PERTURBACIÓN O ERROR • Omisión de variables explicativas: se excluyen variables que no se pueden medir. • Agregación de variables micro-económicas. Relaciones individuales pueden tener distintos parámetros. • Incorrecta especificación del modelo en términos de su estructura: común en datos de series de tiempo, la variable endógena puede depender de sus valores pasados. • Incorrecta especificación funcional: relaciones lineales vs. no lineales.

  14. 4. LOS SUPUESTOS CLÁSICOS • SC1: • Linealidad de la esperanza condicional. ¿Término de perturbación aditivo? Sí. • Regresores Adecuados. • Parámetros Constantes. • SC2: Supuesto de Regresión • SC3: Rango Completo por columnas (no multicolinealidad). • SC4: Ausencia de relación estadística entre X y perturbaciones. • SC5: Perturbaciones esféricas: Homocedasticidad y No Autocorrelación.

  15. 4. LOS SUPUESTOS CLÁSICOS SC1: LINEALIDAD DE LA ESPERANZA CONDICIONAL 1. Lineal en parámetros y variables: en general para k variables: Notación matricial:

  16. 4. LOS SUPUESTOS CLÁSICOS • Coeficientes de la Regresión y Efectos Marginales • Interpretación de los parámetros

  17. 4. LOS SUPUESTOS CLÁSICOS 2. Regresores adecuados: el modelo especificado es el “verdadero” • No se omiten variables importantes. • No se incluyen variables redundantes. 3. Los parámetros son constantes: • Para la muestra analizada: individuos o tiempo. • Al menos que fluctúen (poco) alrededor de un valor constante. • No hay cambio estructural o de régimen (series de tiempo), cualidades (corte transversal).

  18. 4. LOS SUPUESTOS CLÁSICOS SC2: SUPUESTO DE REGRESIÓN: • MEDIA INCONDICIONAL DEL TÉRMINO DE PERTURBACIÓN IGUAL A CERO: • Regresores son fijos en muestreo repetido. • Regresores son variables aleatorias y con distribución totalmente independiente del término de perturbación. • MEDIA CONDICIONAL DEL TÉRMINO DE PERTURBACIÓN DADO X ES IGUAL A CERO: • Regresores son variables aleatorias y con distribución independiente en media del término de perturbación.

  19. 4. LOS SUPUESTOS CLÁSICOS SC3: RANGO COMPLETO POR COLUMNAS DE X • No es posible que n<k • El número de observaciones es mayor al número de regresores: n > k (variación de los regresores). • Columnas linealmente independientes • No existen relaciones lineales exactas entre regresores: Ausencia de Colinealidad o Multicolinealidad. • Implicancias: • X’X es positivo definida • la inversa de (X’X) existe!

  20. 4. LOS SUPUESTOS CLÁSICOS SC4: AUSENCIA DE RELACIÓN ESTADÍSTICA ENTRE REGRESORES Y PERTURBACIONES: Se presentan dos casos: • Regresores Fijos en muestras repetidas (no estocásticos). • Regresores Estocásticos: • Independencia total. • Independencia en media. • Ausencia de relación lineal contemporánea.

  21. 4. LOS SUPUESTOS CLÁSICOS • Independencia Total de las perturbaciones y regresores. • Independencia en media de las perturbaciones. Si se cumple SC2 , entonces :

  22. 4. LOS SUPUESTOS CLÁSICOS • Ausencia de relación lineal contemporánea entre perturbaciones y regresores. Si , entonces :

  23. 4. LOS SUPUESTOS CLÁSICOS SC5: PERTURBACIONES ESFÉRICAS • Homocedasticidad: • Supuesto sobre el segundo momento condicional. • Si se cumple SC2 y SC4 (al menos independencia en media):

  24. 4. LOS SUPUESTOS CLÁSICOS • No autocorrelación: • Si se cumple SC2 y SC3: • En series de tiempo: ausencia de correlación serial.

  25. 4. LOS SUPUESTOS CLÁSICOS • Perturbaciones Esféricas: Notación matricial • La matriz de segundos momentos es proporcional a la identidad. • Si se cumple SC2 y SC4 (al menos independencia en media):

More Related