1 / 1

Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass (BMG)

Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass (BMG). a).

ovid
Download Presentation

Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass (BMG)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass (BMG) a) Biomaterials implanted in the body evoke a “Foreign body response” which results in encapsulation of the material in a collagen-rich protein capsule. Fibroblast cells, which produce collagen, mediate this process that leads to biomaterial rejection / device failure in vivo. Surface nanotopography of BMGs can be used to engineer fibroblast-material interactions. As shown here, varying nanopattern BMG nanopattern dimensions (a) leads to changes in the formation and distribution of protein complexes that mediate cell-material adhesion in fibroblasts (b). This leads to a decrease in intracellular levels of Rho-A GTPase, a protein which is involved in cell spreading and cell function. Fibroblasts grown on nanopatterned BMGs display restricted cell spreading (c) and produce significantly less collagen (d). Thus, nanopatterned BMGs can limit collagen production in fibroblasts and may provide a viable approach to control biomaterial rejection and increase implant lifetime. b) c) d) J. Padmanabhan, E. Kinser, M. Stalter, C. Duncan-Lewis, J. Balestrini, A. Sawyer, J. Schroers, T. Kyriakides, Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass. ACS Nano2014. NSF-MRSEC DMR-1119826 Center for Research on Interface Structures and Phenomena Yale University | Southern Connecticut State University

More Related