1 / 1

Teoirim De Moivre ( cos  + i sin  ) n = cosn  + i sinn 

Teoirim De Moivre ( cos  + i sin  ) n = cosn  + i sinn . Le Cruthú: (cos  + i sin  ) n = cosn  + i sinn  n  Z. Cruthú: Glac leis gur fíor é i gcás n = k Dá réir sin (cos  + i sin  ) k = cosk  + i sink . Cruthaigh go bhfuil sé fíor i gcás n=k+1.

owen
Download Presentation

Teoirim De Moivre ( cos  + i sin  ) n = cosn  + i sinn 

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Teoirim De Moivre(cos + i sin)n = cosn + i sinn Le Cruthú: (cos + i sin )n = cosn + i sinn n  Z Cruthú: Glac leis gur fíor é i gcás n = k Dá réir sin(cos + i sin)k= cosk + i sink Cruthaigh go bhfuil sé fíor i gcás n=k+1 (cos + i sin)k+1 = (cos + i sin)k (cos + i sin)1 = (cosk + i sink)(cos + i sin)1 = coskcos + icosksin + i sinkcos + i2sink sin  = cos kcos - sink sin + i(cosk sin + sin k cos ) =cos(k+1) + i sin(k+1)  Is fíor é i gcás n = k, Is fíor é i gcás n =k+1 Ach is fíor é i gcás n = 1 mar tá (Cos +i sin )1=cos +i sin  Dá réir sin leis an Ionduchtú is fíor é i gcás n , n = Z+ (cos + i sin)n = cosn + i sinn Cóipcheart Foireann Fhorbartha Thionscadal Mata 2012

More Related