1 / 13

Design of experimental optimization for ULSI CMP process applications

Design of experimental optimization for ULSI CMP process applications. Sung-Woo Park a , Chul-Bok Kim b , Sang-Yong Kim c , Yong-Jin Seo a,* A Department of Electrical Engineering , Daebul University , 72- 1, Sanho , Samho , Youngam , Chonnam , 526- 702, South Korea

parker
Download Presentation

Design of experimental optimization for ULSI CMP process applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Design of experimental optimization for ULSI CMP process applications Sung-Woo Park a , Chul-Bok Kim b , Sang-Yong Kim c , Yong-Jin Seo a,* ADepartment of Electrical Engineering , Daebul University , 72- 1, Sanho , Samho , Youngam , Chonnam , 526- 702, South Korea BDong Sung A &T Co ., Kyunggi 429- 450, South Korea cFAB . Division , ANAM Semiconductor Co ., Inc ., Kyunggi 420- 040, South Korea

  2. Content • Abstract • Introduction • Experimental • Results and discussion • Conclusions

  3. Abstract • 當電子元件收縮到深次微米區域,化學機械拋光 (CMP)在ULSI製程 變得較必要的技術。 • 針對多層次連接的平坦度要求只有CMP製程能達到。 • 製程變數是在決定移動率(remove rate)和非均一性(non-uniformity)方面是非常重要的參數 。 • 運用實驗設計方法的將 CMP 儀器參數最佳化。 • 以高移動率和較低的非均一性觀點檢查製程參數,並決定最佳的 CMP 參數。

  4. Introduction • 增加元件製造產量和安定可以藉由化學機械拋光 (CMP)製程應用到一個 0.18 公釐半導體元件。 • 特別是針對介電金屬(inter-metal dielectric; IMD )介電層(inter-level dielectric ;ILD)及之間連接層的完全平坦度只有CMP製程能作到。 • 但是它仍然有各種不同的問題 。如碟型效果,腐蝕和薄膜損害,輕微擦傷等。 • 也有一些問題依據 CMP製程部份解決。 那是,CMP 消耗品,系統設備的問題, 在 CMP 之後的清潔 和各種不同的變數必須被改良。 • 在上述的 CMP 成份,slurry和儀器控制變數是在決定移動率和非均一性方面非常重要的參數 。 • 用DOE手法去獲得CMP的控制參數。

  5. Experimental • 實驗機台:CMP polisher (精拋機) • 控制因子: • Slurry flow rate :以含有SiO顆粒及KOH填補研磨空隙,防止應力破壞。 研磨後,以純水及旋轉方式清洗表面。 • Table and Head speed :兩者研磨轉速。 • Down force :將晶圓下壓的力量。

  6. Results and discussion • 精拋率(polish rate)的表達是參考的普勒斯頓方程式﹐精拋率依照向下壓力及兩者研磨轉速速度。 • 光澤率若為零﹐表示缺乏其中一項。 • Table speed :Fig. 2)當速度增加﹐remove rate呈線性增加, 非均一性先減少後增加。 • Head speed :(Fig. 3)轉速在52 rpm 時 ﹐ remove rate上升幅度變大。速度增加,slurry粒子的旋轉速度在與晶圓表面的接觸也增加,如此remove rate及非均一性增加。所以, 52rpm是關鍵點 。 • Relative velocity (vh/ vt ) :Figs. 4 ,head to table speed ratio ,相關的速度增加,移動率不斷地減少 非均一性從1.14快速地增加.結論應該在 1 和 2 之間. • Down force :(Fig. 6)在8.5psi的條件下有最大remove rate(2800 °A/min埃)及最小非均一性。 • Slurry flow rate :Fig 7 。

  7. Flow rate>90 阻礙remove rate Flow rate>60 非均一性變大

  8. Conclusions • 經過DOE之後,CMP 參數最佳化非均一性在4%以 下﹐Remove rate超過 2000° A/min 。 • 必須小心地設計Head/Table speed比例(1~2倍) 。

More Related