1 / 55

Geometria das Moléculas e Teoria das Ligações

CAPÍTULO 9. Geometria das Moléculas e Teoria das Ligações. Grupo:Michael Felipe Guarizo (EEL/17114) Rodrigo Davy Vaz de Oliveira Braga (EEL/17127) Hélio Hideki Takigone (EEL/17119). Geometria das moléculas.

penha
Download Presentation

Geometria das Moléculas e Teoria das Ligações

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CAPÍTULO 9 Geometria das Moléculas e Teoria das Ligações Grupo:Michael Felipe Guarizo (EEL/17114) Rodrigo Davy Vaz de Oliveira Braga (EEL/17127) Hélio Hideki Takigone (EEL/17119) Prof. Élcio

  2. Geometria das moléculas • A estrutura de Lewis só nos fornece o número e o tipo de ligação que determinada molécula realiza. • A forma espacial que tal molécula adquire no espaço, é determinada por seus ângulos de ligação, gerado pela repulsão dos elétrons (ligantes e não ligantes) presentes na camada de valência dos átomos, dando uma geometria 3D à molécula. Prof. Élcio

  3. Geometria molecular • Existem 5 tipos de geometria fundamentais que obedecem o esquema ABn para a distribuição espacial Prof. Élcio

  4. Geometria molecular • 5-Octaédrica ou bipiramidal tetragonal (presente em moléculas com seis nuvens eletrônicas na camada de valência do átomo central, e todas realizam ligação). • SF6 Prof. Élcio

  5. Geometria molecular • 4-Bipiramidal trigonal (presente em moléculas com cinco nuvens eletrônicas na camada de valência do átomo central, e todas realizam ligações). • SF4 Prof. Élcio

  6. Geometria molecular • 3-Tetraédrica (presente em moléculas com quatro nuvens eletrônicas na camada de valência do átomo central, e todas realizam ligações). • CH4 Prof. Élcio

  7. Geometria molecular • 2-Trigonal Plana ou Triangular (presente nas moléculas em que o átomo central possui três nuvens eletrônicas em sua camada de valência, e todas realizam ligações). • SO3 Prof. Élcio

  8. Geometria molecular • 1-Linear (presente em todas as moléculas biatômicas ou em moléculas em que o átomo central possua no máximo duas nuvens eletrônicas em sua camada de valência, e todas realizam ligações). • CO2 Prof. Élcio

  9. Casos particulares (angular e piramidal) • Angular (moléculas que possuem par de elétrons não ligantes no átomo central). • H2O Prof. Élcio

  10. Casos particulares (angular e piramidal) • Piramidal (moléculas com quatro nuvens eletrônicas no átomo central, mas apenas três realizam ligações). • NH3 Prof. Élcio

  11. Modelo RPENV • Para determinar a geometria que a molécula adquire, usamos os pares de elétrons ligantes e não ligantes, determinados pela forma estrutural de Lewis. • A molécula adquire a geometria em que a repulsão entre seus elétrons seja a mínima possível. Prof. Élcio

  12. Modelo RPENV • Efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação. • Uma molécula pode adquirir a mesma geometria que outra molécula, mas não necessariamente devem ter o mesmo ângulo de ligação. Isso ocorre devido aos pares de elétrons não-ligantes serem atraídos por um único núcleo, gerando uma força repulsiva maior entre os adjacentes, comprimindo o ângulo de ligação. Prof. Élcio

  13. Modelo RPENV • Moléculas com níveis de valência expandidos • *Moléculas com cinco nuvens eletrônicas, tendem a se estabilizar quando adquirem a geometria bipiramidal trigonal • *Moléculas com seis nuvens eletrônicas, tendem a se estabilizar quando adquirem a geometria bipiramidal tetragonal Prof. Élcio

  14. Modelo RPENV Prof. Élcio

  15. Modelo RPENV • Formas espaciais de moléculas maiores • Atribuímos a geometria ao redor de cada átomo central separadamente • CH3COOH (ácido acético) Prof. Élcio

  16. Polaridade • Linha de eletronegatividade Prof. Élcio

  17. Polaridade • Existe uma diferença de eletronegatividade entre as moléculas. A essa diferença damos o nome de momento de dipolo. Prof. Élcio

  18. Polaridade • Os momentos de dipolo são grandezas vetoriais, portanto, uma molécula pode ter ligações polares e ser apolar, ou seja, se o momento de dipolo resultante for zero, dizemos que a molécula é apolar, mas se o momento de dipolo resultante for diferente de zero, a molécula é polar. Prof. Élcio

  19. Polaridade • Concluímos então que a polaridade da molécula depende de sua geometria • Apolar – CO2 Prof. Élcio

  20. Polar – H2O Momento de dipolo total ‡ 0 Polaridade Prof. Élcio

  21. Polaridade Prof. Élcio

  22. Ligação covalente e superposiçãode orbitais • Teoria da ligação de Valência • A teoria tenta explicar a ocorrência de ligações covalentes entre átomos. Esta ocorreria através da superposição de orbitais atômicos semi-preenchidos de átomos distintos que se ligariam, sendo que esta superposição causaria o aumento da densidade eletrônica entre os núcleos. Prof. Élcio

  23. Ligação covalente e superposição de orbitais • Relação entre a distância de átomos ligantes e a energia potencial Prof. Élcio

  24. Orbitais híbridos • Para explicarmos as geometrias de moléculas poliatômicas, freqüentemente supomos que os orbitais atômicos em um átomo se misturam para formar orbitais híbridos. Prof. Élcio

  25. Orbitais híbridos Prof. Élcio

  26. Orbitais híbridos • Hibridização é o processo pelo qual se combinam orbitais atômicos durante a aproximação dos átomos ligantes. O número de orbitais híbridos é igual ao número de orbitais atômicos que se misturam. Os orbitais híbridos tem regiões maiores do que os orbitais que o formaram. Prof. Élcio

  27. Orbitais híbridos • Orbitais Híbridos sp • São orbitais formados pela mistura de um orbital s e um orbital p, sendo que ambos os orbitais devem conter elétrons desemparelhados. Usamos a estrutura eletrônica do Be: Prof. Élcio

  28. Orbitais híbridos Prof. Élcio

  29. Orbitais híbridos • Orbitais híbridos sp2 e sp3 • Os orbitais sp2 são coplanares afastados 120º. É responsável pela geometria trigonal plana. • Os orbitais sp3 apontam em direção aos vértices de um tetraedro. Prof. Élcio

  30. Orbitais híbridos Prof. Élcio

  31. Orbitais híbridos • Hibridização com orbitais d • É possível com átomos do 3º período ou subsequentes, e segue a mesma lógica mostrada para os outros orbitais híbridos. Prof. Élcio

  32. Orbitais híbridos • sp3d – bipirâmide trigonal • sp3d2 - octaedro Prof. Élcio

  33. Ligações múltiplas • Ligação sigma e pi • A ligação sigma corresponde a uma ligação direta entre os átomos, ou seja, os orbitais cruzam a reta que une os núcleos atômicos. Já a ligação pi corresponde a uma ligação lateral entre os orbitais atômicos; os orbitais dessa ligação são perpendiculares à reta internuclear. Os orbitais correspondentes a pi são menos estáveis que os orbitais sigma. • Uma ligação sigma corresponde em geral a uma ligação simples • Uma ligação sigma e uma pi formam uma ligação dupla • Uma ligação sigma e duas pi formam uma ligação tripla Prof. Élcio

  34. Ligações múltiplas • Ligações pi delocalizadas Prof. Élcio

  35. Teoria do Orbital Molecular • Maneira mais complexa e atual de se considerar os orbitais nas moléculas. • Suponha que orbitais atômicos puros dos átomos na molécula combinam-se para produzir orbitais que são espalhados ou delocalizados sobre diversos átomos ou mesmo sobre uma molécula inteira. Esses novos orbitais são os orbitais moleculares. • Um exemplo de aplicação é a previsão dos orbitais moleculares que dão a estrutura eletrônica da molécula de O2, que não segue a suposição de emparelhamento de elétrons da abordagem de Lewis. Prof. Élcio

  36. Princípios da Teoria do Orbital Molecular • O número total de orbitais moleculares é sempre igual ao número total de orbitais atômicos fornecidos pelos átomos que combinaram. • O orbital molecular ligante tem menor energia do que os orbitais atômicos originais, e os orbitais anti-ligantes são de maior energia. Prof. Élcio

  37. Princípios da Teoria do Orbital Molecular • Os elétrons da molécula são atribuídos aos orbitais de energia cada vez maior, de acordo com o principio da exclusão de Pauli e o princípio da maior multiplicidade de Hund. • Os orbitais atômicos combinam-se para formar orbitais moleculares de forma mais eficaz, quando os orbitais atômicos possuem energias semelhantes. Prof. Élcio

  38. Orbitais moleculares para H2 • Os orbitais dos dois átomos do H2 se sobrepõem formando assim 2 orbitais moleculares • Orbital molecular resultante da adição: O.M. ligante • Orbital molecular resultante da subtração: O.M. anti-ligante Prof. Élcio

  39. Teoria do Orbital Molecular Prof. Élcio

  40. Teoria do Orbital Molecular Prof. Élcio

  41. Ordem de ligação para Teoria do Orbital Molecular • Número líquido de pares de elétrons de ligação unindo um par de átomos. • Ordem de ligação = ½ (nº de e- em O.M. ligantes – nº de e- em O.M. anti-ligantes) • A estabilidade da ligação está relacionada à ordem de ligação. Quanto maior a ordem de ligação mais estável a ligação. Prof. Élcio

  42. Orbital Molecular de Li2 • Os elétrons ơ1se ơ1s* se anulam em relação a estabilizar a ligação. • A ligação deve-se ao par de elétrons atribuídos ao orbital ơ2s . • Ordem de ligação (OL) = 1 Prof. Élcio

  43. Teoria do Orbital Molecular Prof. Élcio

  44. Orbital Molecular de Be2 • Provavelmente não existe, pois todos os elétrons se cancelam para estabilizar a ligação, assim não há ligação líquida. • OL = 0 Prof. Élcio

  45. Orbitais Moleculares dos orbitais atômicos 2p • Quando os orbitais 2p se sobrepõem, seis orbitais moleculares resultam da combinação: • Um orbital ơ e um ơ*, resultante da interação de dois orbitais de cada átomo. Prof. Élcio

  46. Orbitais Moleculares dos orbitais atômicos 2p • Dois orbitais π e dois orbitais π*, resultantes da interação de dois orbitais de cada átomo. • Quando ocorrem interações entre os orbitais “s” e “p” do mesmo nível, a ordem de energia dos orbitais moleculares pode se alterar. Prof. Élcio

  47. Orbitais Moleculares dos orbitais atômicos 2p Prof. Élcio

  48. Orbitais Moleculares dos orbitais atômicos 2p Prof. Élcio

  49. Configurações eletrônicas e propriedades moleculares • Quanto ao comportamento das moléculas em um campo magnético, elas podem apresentar: Prof. Élcio

  50. Configurações eletrônicas e propriedades moleculares • Paramagnetismo: possuem elétrons não emparelhados, sendo assim fortemente atraídas pelo campo magnético. Prof. Élcio

More Related