590 likes | 939 Views
4. Erhaltungssätze. 4.1 Erhaltung der Masse. Bei chem. Reaktionen gilt: Prinzip von der Erhaltung der Masse: In einem abgeschlossenen System bleibt die Gesamtmasse immer gleich. Ein Prinzip gilt bis eine Beobachtung widerspricht.
E N D
4. Erhaltungssätze 4.1 Erhaltung der Masse Bei chem. Reaktionen gilt: Prinzip von der Erhaltung der Masse: In einem abgeschlossenen System bleibt die Gesamtmasse immer gleich. Ein Prinzip gilt bis eine Beobachtung widerspricht. Es gibt physikalische Vorgänge, bei denen das obige Prinzip nicht gilt. Kernfusion:Masse wird in Energie umgewandelt. Erhaltungssätze
4.2 Energieerhaltungssatz 4.2.1 Arbeit Arbeit: Der Begriff “ Arbeit ” ist im Alltag anders verwendet als in der Physik. Der physikalische Begriff muss eindeutige Ergebnisse bringen. Heben eines Körpers: Längs des Weges h wird die Last F = mg gehoben. Arbeit W = mgh Erhaltungssätze
Schiebt man den Körper auf einer schiefen Ebene (oder rollt ihn), ist weniger Kraftaufwand nötig. Arbeit W = Fs· s Erhaltungssätze
Rechenbeispiel: h = 1,5 m s = 3,6 m FG = 1000 N Heben: W = F·h W = 1000·1,5 = 1500 J Schiefe Ebene: Fs : F = h : s Beide Male gleich. (Was an Kraft gewonnen wird, geht an Weg verloren.) Erhaltungssätze
Definition für Arbeit: W = Fs.s Arbeit = Kraft in Wegrichtung mal Weg Einheit:1 Joule = 1Nm Erhaltungssätze
Ein gehobener Körper kann unter Verlust seiner Höhe wieder Arbeit verrichten. Die ihm zugeführte Energie geht nicht verloren, er kann sie wieder abgeben (Energieübertragung). Der gehobene Körper hat potentielle EnergieEpot = mgh Erhaltungssätze
Bemerkung Die potentielle Energie ist relativ bezogen auf das jeweilige Bezugssystem. z.B. ein Kreidehalter auf dem Tisch: m = 0,0278 kg Abstand Fußboden – Lehrerpult: h = 0,9 m Abstand Lehrerpult – Decke: h = 2,3 m Potentielle Energie: In Bezug auf den Fußboden: Epot = 0,0278·9,81 · 0,9 = 0,245 Joule In Bezug auf den Tisch: Epot = 0 Epot = – 0,63 Joule In Bezug auf die Decke: Das „- “ bedeutet einen gebundenen Zustand. Erhaltungssätze
4.2.2 Beschleunigungsarbeit, Bewegungsenergie Auf einen Körper wirkt eine konstante Kraft. → Gleichmäßig beschleunigte Bewegung v = a·t W = F· s = m·a·s = m·a Beschleunigungsarbeit: Ein Körper mit der Geschwindigkeit v hat die kinetische Energie Erhaltungssätze
4.2.3 Freier Fall, energetisch betrachtet Annahme: Körper befindet sich momentan in der Höhe h: Daraus ersieht man: E = Ekin + Epot = konstant In einem abgeschlossenen System bleibt die Gesamtenergie gleich. Erhaltungssätze
Beispiel: Welche Maximalhöhe erreicht ein lotrecht geworfener Stein mit der Anfangsgeschwindigkeit 20 m/s ? Energie unten: Eu = Energie oben: Eo = 0 + mgh Ansatz: Energie unten = Energie oben → h = 20,3 m Erhaltungssätze
Beispiel 2: Ausflussgeschwindigkeit: v = ? h Erhaltungssätze
4.2.4 Arbeit beim Spannen einer Feder x F Erhaltungssätze
4.2.4 Arbeit beim Spannen einer Feder x F Erhaltungssätze
4.2.4 Arbeit beim Spannen einer Feder F = k·x Arbeit W = F·s Die Kraft ändert sich hier (nimmt zu). Die Verformung ist umkehrbar, d. h. die gespannte Feder kann Arbeit verrichten. Erhaltungssätze
Arbeit zum Spannen einer Feder: Energie der verformten Lage: (stellt eine potentielle Energie dar) Erhaltungssätze
4.2.5 Energieerhaltungssatz Beispiel: Ein Körper mit der Anfangsgeschwindigkeit v bewegt sich auf einer horizontalen Unterlage. Reibung wird berücksichtigt. Energie am Anfang: Widerspruch Energie am Ende: EE = 0 + mgh Die kinetische Energie wird in innere Energie umgewandelt. → Erwärmung des Körpers. Allgemeine Formulierung des Energieerhaltungssatzes: E = Ekin + Epot + U = konstant U ... innere Energie In einem abgeschlossenen System bleibt die Gesamtenergie konstant. Die einzelnen Energieformen können sich in die anderen umwandeln. Erhaltungssätze
Beispiel aus der Verkehrsphysik: Wie kann die Verletzungsgefahr minimiert werden ? F ... Abbremskraft s ... Abbremsweg Ziel: F klein halten ! Möglichkeiten: Langsamer fahren, Erhöhen des Abbremsweges Erhaltungssätze
Überlege neben-stehende Grafik! Erhaltungssätze
4.2.6 Leistung Bei der Arbeit spielt die Zeit keine Rolle. Um verschiedene Arbeiten vergleichen zu können, führen wir den Begriff der Leistung ein. Einheit 1 Watt = 1 J/s (1 W) Alte Leistungseinheit: 1 PS = Leistung, die benötigt wird, um 75 kg in einer Sekunde einen Meter zu heben. 1 PS = 0,7355 kW oder ¾ kW Erhaltungssätze
Dauerleistung eines Menschen: Berechne die Leistung eines Menschen, der in 3/4 h auf den Pfänder wandert! m = 58 kg, h = 644 m, t = 45 min = 2700 s W = 366,423 kJ P = 135,71 W Erhaltungssätze
Von Watt abgeleitete Einheit: 1 kWh ... 1 Kilowattstunde = Einheit für die Arbeit 1000 Wh = 1000 W·3600 s = 3600000 Ws = 3,6 MJ Führe Aufgabe A3 Seite 64 aus! Erhaltungssätze
4.3 Impuls und Impulserhaltung Wir betrachten Systeme, bei denen mehrere Körper (wir behandeln hier nur 2-Körper-Probleme) aufeinander durch Kräfte einwirken. Beispiele: Skateboard + Fahrer 2 Billardkugeln Boot + Mensch Mit der Energie allein lässt sich das nicht beschreiben. (Energie ist ein Skalar!!) Auch die Richtung ist wichtig! Erhaltungssätze
Wir führen dazu eine weitere Größe ein: Der Impuls: Er ist ein Vektor. Einheit: [p] = [m.v] = 1 kgms-1 = 1 Ns Beispiel: Berechne den Impuls eines Güterzuges (m=800 t, v=80km/h) Lösung: p = 800000·80/3,6 = 1,78·107 kgms-1 Erhaltungssätze
Versuch: Ergebnis: Nur 1 Kugel wird weggestoßen. Bei 2 anstoßenden Kugeln werden 2 weggestoßen. …. Der Impuls wird auf die letzte Kugel übertragen. Erhaltungssätze
Warum fliegt bei 2 Kugeln nicht eine, diese dafür schneller weg? Der Energiesatz stimmt bei einer Kugel: Würde nur eine Kugel bei 2 stoßenden wegfliegen, müsste diese den Impuls mv' = 2mv haben → v' = 2v Danach hätte die Kugel aber die Energie was ein Widerspruch zum Energiesatz ist. (Perpetuum mobile). Erhaltungssätze
4.3.1 Der Impulserhaltungssatz In einem abgeschlossenen System bleibt der Gesamtimpuls erhalten. Überprüfe dies anhand der Schülerversuche M4.6 Beispiel: Mann im Boot, beide zunächst ruhend. Mann springt aus dem Boot. mB = 100 kg; mM = 75 kg; vM = 1 m/s Berechne die Geschwindigkeit des Bootes nach dem Absprung! Anfang: P = 0 Nachher: P = mB ·vB + mM·vM vB = (- 75/100) . 1 = -0,75m/s Erhaltungssätze
Impulssatz Erhaltungssätze
Aufgabe zum Impuls Aufgabe 1: Eine Surferin (m = 50 kg) springt von einem Surfbrett (m = 9 kg) ins Wasser. Das Brett schießt dabei mit 3 m/s nach hinten weg. Wie groß war die Horizontalgeschwindigkeit der Surferin beim Sprung ins Wasser? Lösung: -0,54m/s Erhaltungssätze
4.3.2 Der Impulssatz im nicht abge- schlossenen System Betrachten wir einen frei fallenden Körper nicht im abgeschlossenen System Erde-Körper. Auf ihn wirkt die Kraft: F = m·g, v = g·t Sein Impuls beträgt: P = m·v = m·(g·t) = m·g ·t = F·t P = F.t bzw. Dies gilt ganz allgemein. Erhaltungssätze
In Worten: In einem nicht abgeschlossenen System ist die zeitliche Änderung des Gesamtimpulses gleich der gesamten von außen angreifenden Kraft. Beispiel: Mit einem Hammer wird ein Nagel eingeschlagen. Dazu ist es notwendig, dass man dem Hammer eine gewisse Geschwindigkeit erteilt - nur das Darauflegen des Hammers reicht nicht. m = 500g. v = 5m/s Δ t = 0,01s F = m.(v-0)/Δt F = 0,5·5/0,01 = 250 N Sein Gewicht beträgt nur 5N. Erhaltungssätze
4.3.3 Stöße Einteilung der Stöße: Kommt es zu Formveränderungen der Körper, so hat sich ein Teil der kinetischen Energie in innere Energie umgewandelt. ( Arbeit zum Verformen wurde verrichtet.) Aus Gründen der Einfachheit betrachten wir nur gerade Stöße von Massenpunkten. Erhaltungssätze
4.3.3.1 Gerade Stöße m1, m2 … Massen der Körper v1, v2, … Geschwindigkeiten vor dem Stoß … Geschwindigkeiten nach dem Stoß Erhaltungssätze
Impulserhaltung: Energieerhaltung: Erhaltungssätze
Gerader elastischer Stoß Die innere Energie ändert sich nicht: U = U’ • Die Massen sind gleich. • Die Masse m2 >> m1. • v2 = 0 und die beiden Massen sind gleich. • m2 ist eine ruhende schwere Wand Umformen der beiden Gleichungen und auflösen nach liefert: Diskutiere folgende Fälle: Erhaltungssätze
Lösungen: (1) m1 = m2 : Die Geschwindigkeiten werden ausgetauscht. (2) Die Masse m2 >> m1 : (3) v2 = 0 und die beiden Massen sind gleich. (4) m2 ist eine ruhende schwere Wand: Erhaltungssätze
Unfairer Massenvergleich Erhaltungssätze
Gerader unelastischer Stoß Beim idealen unelastischen Stoß gilt: Die beiden Stoßpartner bewegen sich nach dem Stoß mit derselben Geschwindigkeit. Impulssatz: Energiesatz: Erhaltungssätze
Aufgaben zum Impuls Aufgabe 2: Ein Kleinbus (m = 2650 kg) fährt mit 40 km/h von hinten auf einen vor einer roten Ampel stehenden Kleinwagen (m = 1050 kg) auf. Der Stoß wird als völlig unelastisch betrachtet. Mit welcher Geschwindigkeit bewegen sich die beiden Wracks nach dem Zusammenstoß? Ein wie großer Teil der kinetischen Energie des Kleinbusses wurde bei dem Zusammenstoß in innere Energie umgewandelt? Welche Geschwindigkeitsänderung erfuhr der Kleinbus bei dem Zusammenstoß? Wie groß war die des Kleinwagens? (Lösung: 7,94 m/s ΔU = 46,6 kJ Bus: 11,4 km/h ) Erhaltungssätze
4.3.3.2 Schiefer unelastischer Stoß Stroboskopaufnahme eines schiefen unelastischen Stoßes. Unelastischer Stoß auf eine Wand. Das Auto fährt längs der Wand weiter Erhaltungssätze
Die zur Wand parallele Komponente vp bleibt bei vernachlässigbarer Reibung unverändert. Die zur Wand normale Komponente und ihre Bewegungsenergie müssen aufgezehrt werden. (→innere Energie). Anwendung: Leitplanken am Straßenrand sollen Auto nicht zurückwerfen. Erhaltungssätze
Schispringer Erhaltungssätze
Diskutiere die für den Aufsprung des Schispringers wesentlichen Aspekte! • Welche Art von Stoß liegt vor? • Warum muss der Aufsprung im Steilhang erfolgen? • Welchen Bruchteil der Bewegungsenergie muss der Springer bei einem Aufsprungwinkel von α = 20° auffangen? Erhaltungssätze
vp bleibt gleich, vn ist die Aufprallgeschwindigkeit normal auf die Schanze. Diese muss er mit seinem Körper auffangen. Bewegungsenergie, die er bei 20° auffangen muss: Erhaltungssätze
Aufgaben zum Impuls Aufgabe 3: Elfmeterschießen: Der Tormann (m = 70 kg) fängt den mit 90 km/h anfliegenden Ball (m = 0,8 kg) im Sprung. Welche Auswirkung hat das (physikalisch gesehen) auf die Bewegung des Tormanns? Sie können mit den Gleichungen des unelastischen Stoßes rechnen. (Lösung: 0,28 m/s Richtung Tor) Erhaltungssätze
Aufgaben zum Impuls Aufgabe 4: Elfmeterschießen: Der mit 90 km/h fliegende Ball (m = 0,8 kg) springt von den Fäusten des Tormanns (m = 70 kg) zurück ins Spielfeld. Welche Auswirkung hat das (physikalisch gesehen) auf die Bewegung des Tormanns? Sie können mit den Gleichungen des elastischen Stoßes rechnen. Lösung: Ball -24,4 m/s; Tormann: 0,56 m/s Ri Tor Erhaltungssätze