1 / 37

Analisi di linkage

Analisi di linkage. Vincenzo Nigro Dipartimento di Patologia Generale Seconda Università degli Studi di Napoli. Telethon Institute of Genetics and Medicine (TIGEM). A. a. A. A. a. a. A allele patologico dominante a allele normale recessivo. a. a. un genitore.

pink
Download Presentation

Analisi di linkage

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Analisi di linkage Vincenzo Nigro Dipartimento di Patologia Generale Seconda Università degli Studi di Napoli Telethon Institute of Genetics and Medicine (TIGEM)

  2. A a A A a a A allele patologico dominante a allele normale recessivo a a un genitore entrambi i genitori Aa aa Aa Aa aa aa AA Aa aa Aa Aa Aa Genotipi: 1/4 AA, 1/2 Aa, 1/4 aa Fenotipi: 3/4 affetti, 1/4 non affetti Genotipi: 1/2 Aa, 1/2 aa Fenotipi: 1/2 affetti, 1/2 non affetti Trasmissione Autosomica Dominante 50% dei figli manifestano il carattere senza preferenza di sesso 75% dei figli manifestano il carattere senza preferenza di sesso

  3. Espressività Variabile Espressività: grado con il quale la malattia è espressa in un individuo Il tipo e la gravità delle manifestazioni cliniche non sono sempre sovrapponibili negli individui affetti dalla stessa patologia A.D. VARIABILITA’ INTERFAMILIARE o INTRAFAMILIARE Importanza di un accurato esame clinico esteso ai consanguinei di un affetto, anche apparentemente sani Nei figli di soggetti moderatamente affetti la patologia può essere più grave (es. Sclerosi tuberosa)

  4. Espressivita’ variabile SINDROME: Un insieme di segni clinici apparentemente non collegati, ma che si osservano contemporaneamente nei pazienti, così di frequente da essere riconosciuti come un’unica patologia e’ tipica dei fenotipi dominanti, anche se la recessivita’ potrebbe essere interpretata come un effetto della espressivita’ variabile il gene a meno che non sia deleto o completamente inattivato, a livello molecolare e’ sempre “dominante”: il problema e’ avere i mezzi per vederlo al livello di popolazione un fenotipo presenta espressivita’ variabile quando all’interno dell’insieme di soggetti sicuramente portatori il fenotipo presenta gravita’ e/o complessita’ diversa. Anche all’interno della famiglia ci puo’ essere espressivita’ variabile

  5. Espressivita’ variabile SINDROME DI WAARDENBURG Sindrome completa: sordita’ + occhi di colore diverso + ciuffo di capelli bianchi sulla fronte + precoce incanutimento 1 sordita’ 2 sordita’+ occhi di colore diverso 3 sordita’+ occhi di colore diverso + ciuffo di capelli bianchi sulla fronte 4ciuffo di capelli bianchi sulla fronte + precoce incanutimento

  6. Trasmissione Autosomica Dominante Esordio variabile Il fenotipo puo’ comparire in eta’ avanzata Il fenotipo non e’ congenito pur essendo ereditario CONGENITO : presente alla nascita Dal punto di vista genetico raramente questi fenotipi sono dovuti a nuove mutazioni A livello di popolazione l’allele mutato puo’ essere frequente purche’ l’ insorgenza si verifichi dopo l’inizio dell’eta’ riproduttiva e non limiti la fitness FITNESS: IDONEITA’ BIOLOGICA, piu’ semplicemente : capacita’ di riprodursi

  7. Trasmissione Autosomica Dominante Penetranza Incompleta • Penetranza: proporzione di individui portatori del gene patologico che hanno segni clinici della malattia • Può dipendere: • accuratezza diagnostica • (esami clinici e di laboratorio mirati - es. porfiria acuta) • età • (esordio variabile - es.Corea di Huntington) • meccanismo d’azione del gene • (Retinoblastoma, teoria dei 2 hits di Knudson)

  8. Penetranza La penetranza e’ quindi un concetto che si riferisce alla popolazione. A livello del singolo individuo il carattere ha solo due possibilita’ : si manifesta o non si manifesta. E’ piu’ frequente nei caratteri dominanti Sapere che un gene puo’ non essere completamente penetrante, e’ critico per studiarne la genetica o fornire consulenza genetica: un certo soggetto che non manifesta il carattere puo’ essere portatore del gene. E’ critico percio’ il livello di indagine

  9. Età di insorgenza della Corea di Huntington • Probabilità che un individuo portatore del gene mutato abbia sviluppato i sintomi ad una data età • Rischio che il figlio sano di un soggetto affetto sia portatore del gene mutato ad una determinata età.

  10. Penetranza ed espressivita’ La penetranza ridotta non e’ da confondere con l’espressivita’ variabile L’espressivita’ e’ il grado di gravita’con cui fra gli individui che presentano il fenotipo questo si esprime: puo’ costituire un sottoinsieme degli individui “penetranti” Es. Neurofibromatosi: presenza di tumori lungo i nervi periferici e regioni di pigmentazione scura (“macchie di caffelatte”)Tutti i portatori presentano almeno uno dei segni, ma la gravita’ puo’ essere diversa anche all’interno della stessa famiglia: un genitore con macchie e piccoli tumori cutanei benigni puo’ avere un figlio che presenta tumori estesi e maligni. (questa differenza non e’ prevedibile si puo’ solo quantizzare il rischio di ereditare l’allele non il fenotipo)

  11. ipotesi sul rischio di ricorrenza • La malattia non è genetica • La malattia è dovuta a nuova mutazione dominante: rischi di ricorrenza trascurabili nella prole della coppia • La trasmissione è autosomica recessiva: rischio di ricorrenza di 1 su 4 per la futura prole indipendentemente dal sesso • La malattia è legata all’X recessiva e la madre può essere o meno portatrice: rischio di ricorrenza di 1 su 2 maschi se la madre è portatrice • La malattia è poligenica o cromosomica: rischio di ricorrenza ben definito dipendente dal tipo di malattia

  12. mappaggio genico Serve ad identificare la posizione cromosomica di un locus genico Possono essere “mappati”: • marcatori genetici anonimi, quali brevi sequenze di DNA (dette STS), DNA microsatelliti, ecc. • geni • loci associati a malattie con trasmissione mendeliana • loci associati a predisposizione a malattie con trasmissione nonmendeliana

  13. a cosa serve il mappaggio in genetica medica? • per identificare la localizzazione dei geni malattia • per fare diagnosi indiretta in una famiglia in cui la mutazione responsabile di una malattia genetica mendeliana non è stata ancora identificata • per identificare i geni responsabili della suscettibilità a malattie non mendeliane

  14. per localizzare e identificare geni malattia Linkage mapping

  15. per fare diagnosi indiretta in una famiglia in cui la mutazione responsabile di una malattia genetica mendeliana non è stata ancora identificata

  16. per identificare i geni associati ad una suscettibilità a malattie non mendeliane

  17. Segregazione e crossing-over un figlio riceve un cromosoma da ciascun genitore che è il prodotto finale della ricombinazione meiotica Non è possibile ricevere un cromosoma che non abbia effettuato crossing-over

  18. * * * * * * principi generali del mappaggio • si segue la segregazione della patologia nei pedigrees utilizzando marcatori genetici a posizione nota • si correla la segregazione della patologia e dei marcatori in più famiglie • quanto più spesso la patologia e un marcatore co-segregano tanto più sono vicini

  19. c’è bisogno di famiglie abbastanza grandi in cui si osserva la trasmissione della patologia

  20. i membri della famiglia devono essere genotipizzati usando marcatori polimorfici marcatori polimorfici sono noti per ogni cromosoma e di ciascuno si conosce esattamente la posizione cromosomica i marcatori più informativi sono quelli che presentano un elevato grado di eterozigosità, perché questo consente di distinguere l’allele paterno dall’allele materno La nomenclatura D20S906 indica che un marcatore di DNA è singolo nel genoma ed è localizzato sul cromosoma 20; purtroppo il numero 906 non ha alcun rapporto con la posizione

  21. Marcatori polimorfici A partire dagli anni 80 RFLP: restriction fragment length polymorphisms Nella accezione attuale, il DNA purificato è amplificato con la PCR. Il prodotto della PCR è quindi tagliato in frammenti di restrizione mediante enzimi di restrizione detti endonucleasi, che attuano il taglio unicamente in corrispondenza di particolari sequenze nucleotidiche, specifiche per ogni enzima. I frammenti di restrizione sono separati per lunghezza mediante elettroforesi su gel d'agarosio

  22. RFLP l’enzima di restrizione SmaI taglia l’esanucleotide CCCGGG. La sequenza CCGGGG rende non digeribile il DNA in quella posizione

  23. STR • A partire dal 1990 STR: short-tandem repeats or microsatellites • e.g. (CAn) • gttatcttagggctcagtcacacacacacacacacacacatccaggtattggatcaac Quello che varia tra gli alleli è il numero di ripetizioni dell’elemento. E’ molto più frequente riscontrare individui eterozigoti, con un numero di ripetizioni differente nei due alleli

  24. ricombinanti R e non ricombinanti NR il 50% deve essere R e il 50% NR se i loci sono posti su cromosomi differenti, mentre i NR sono >50% se i loci sono sintenici.

  25. L’analisi della frazione di ricombinazione è alla base del mappaggio • la frazione di ricombinazione tra due loci, q, è compresa tra 0 e 0.5 • Il valore di q non può mai essere maggiore di 0.5, il che indica che i loci sono posizionati molto lontani o su cromosomi differenti • se q è significativamente minore di 0.5 i loci sono “linked” • più piccolo è q più vicini sono i loci

  26. l’unità di misura della distanza genetica è il centiMorgan cM La distanza genetica tra due loci è il numero atteso di crossovers per meiosi • le distanze piccole sono accurate mentre le grandi sono sottostimate perché un doppio crossover può far pensare a un non ricombinante • per valutare distanze grandi occorre sommare distanze piccole • per q <10% la correlazione tra q e cM è 1:1 • mediamente 1 cM corrisponde a circa 850.000 bp, ma tale valore è inversamente proporzionale alla frequenza di ricombinazione

  27. Le meiosi si visualizzano con MLH1 che è parte del macchinario di ricombinazione Nella meiosi maschile che avviene nei testicoli ci sono circa 51 chiasmi e quindi considerando 50cM per chiasma, il genoma è di 2550 cM Nella meiosi femminile che è più difficile da studiare perché avviene a 16-24 settimane di vita fetale ci sono almeno 70 chiasmi (3500 cM), ma si stimano 4280cM Dal momento che la frequenza di ricombinazione è differente si usa un valore medio tra i due sessi

  28. 2 5 1 1 1 2 3 4 d d D d 1 3 1 3 2 4 1 4 2 4 2 3 d d D d D d D d d d D d d d D d Il mappaggio per linkage è basato sull’analisi della ricombinazione = affetto = non affetto Locus malattia Marker D = allele patologico d = allele wild-type

  29. d d D d 2 5 1 1 d d D d 1 2 3 4 D d D d d d D d d d D d 1 3 1 3 2 4 1 4 2 4 2 3 1° obiettivo - stabilire la fase Doppio eterozigote

  30. d d D d 2 5 1 1 d d D d 1 2 3 4 D d D d d d D d d d D d 1 3 1 3 2 4 1 4 2 4 2 3 recombinanti q = 1/5 2° obiettivo – contare i ricombinanti NR NR NR NR NR R

  31. lod-score • Il lod-score misura le probabilità a favore del linkage • Compara la probabilità ad un certo valore di  e la probabilità nel caso non vi sia alcun linkage e quindi che  sia uguale a 0.5 LOD = log of the odds Z() = log10 [L()/L(0.5)]

  32. d d D d 2 5 1 1 d d D d 1 2 3 4 D d D d d d D d d d D d 1 3 1 3 2 4 1 4 2 4 2 3 3° obiettivo – calcolare il LOD score NR NR NR NR NR R LOD SCORE (LOD) = log10  ( 1- ) 5 Z = log10  R ( 1- ) NR 0.5 6 0.5 (R+NR)

  33. Il metodo • La probabilità L(q) è calcolata per i differenti valori di q tra 0 e 0.5 • Un rapporto tra le probabilità è calcolato LR(q) = L(q)/L(0.50) • Il lod-score è il logaritmo in base 10 log10 del rapporto tra le probabilità Z(q) = log10[L(q)/L(0.50)] • La migliore stima della frazione di ricombinazione è il valore di q a cui Z(q) è massimo (MLS)

  34. Per le patologie a trasmissione mendeliana Z() >> 3  si accetti il linkage per un carattere autosomico Z() >>2  si accetti il linkage per un carattere X-linked Z()< -2  si respinga definitivamente l’ipotesi di linkage per un particolare valore di  Z() > -2 ma < 3  occorrono ulteriori studi

  35. linked, no recombination

  36. Link utile http://linkage.rockefeller.edu

More Related