80 likes | 179 Views
REVIEW 7-2. Exponential Functions. 3 ----- 3x - 4 . Find the derivative:. 1. f(x) = ln(3x - 4). 2. f(x) = ln[(1 + x)(1 + x2) 2 (1 + x3) 3 ]. ln(1 + x) + ln(1 + x 2 ) 2 + ln(1 + x 3 ) 3. ln(1 + x) + 2 ln(1 + x 2 ) + 3 ln(1 + x 3 ).
E N D
REVIEW 7-2 Exponential Functions
3 ----- 3x - 4 Find the derivative: 1. f(x) = ln(3x - 4) 2. f(x) = ln[(1 + x)(1 + x2)2(1 + x3)3 ] ln(1 + x) + ln(1 + x2)2 + ln(1 + x3)3 ln(1 + x) + 2 ln(1 + x2) + 3 ln(1 + x3) 1 4x 9x2 f '(x) = ------ + -------- + -------- 1 + x 1 + x2 1 + x3
3. y = ln(cosx + 8x) -sinx + 8cosx + 8x 4. y = ln(ln12x) 1__x__ln12x 1__xln12x = 5. y = 9xln2x 9x(1/x) + 9ln2x 9 + 9ln2x
6. y = ex2 7. y = sin(e3x).
SOLVE: 8. ln (x + 4) + ln (x - 2) = ln 7 ln (x + 4)(x - 2) = ln 7 eln (x + 4)(x - 2) = eln 7 (x + 4)(x - 2) = 7 x2 + 2x - 8 = 7 x2 + 2x - 15 = 0 (x - 3)(x + 5) = 0 x = 3 or x = -5
9. Solve the equation. e3x + 2 = 40 ln e 3x + 2 = ln 40 (3x + 2) ln e = ln 40 Remember that ln e = 1. 3x + 2 = ln 40 3x = ln 40 - 2
10. Solve for y: ln y2 +3y - ln (y + 3) = 6 y2 + 3yy + 3 ln = 6 ln(y) = 6 y = e6
SIMPLIFY: 11. ln(e3x) 12. e2ln5x 13. eln7x+9 14. ln( ) 3x (5x)2 = 25x2 _1_e2x eln7x + e97xe9 -2x