1 / 31

RCT

RCT. Prof. dr. Davor Eterović EBM-2011/Klinička biostatistika. RCT. T –pokus dokazuje kauzalnost C –kontrola male učinke razlučuje od nule, veće mjeri ... R - …bez omaški zbog randomskog usklađivanja. RCT: vrline i mane. Najjači dizajn (najpouzdaniji zaključci)

quyn-gray
Download Presentation

RCT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RCT Prof. dr. Davor Eterović EBM-2011/Klinička biostatistika

  2. RCT • T –pokus dokazuje kauzalnost • C –kontrola male učinke razlučuje od nule, veće mjeri ... • R - …bez omaški zbog randomskog usklađivanja

  3. RCT: vrline i mane • Najjači dizajn (najpouzdaniji zaključci) • Nezamjenjiv za male, ali važne efekte ali ponekad i • Teško provodiv, kompliciran, skup • Etički dvojben • Dvojbene primjenjivosti na praksu (netipični bolesnici, netipični tretmani, preintenzivno praćenje) Zbog toga: • Zahtijeva pilot pokus i detaljan protokol: obrazložena hipoteza, plan izvođenja i analize podataka i • Hipoteza valja biti vrlo vjerojatna (etički problem kontrola kod teških ishoda; alternativa- nekontrolirani pokus) • Većinom ne otkriva novo, već potvrđuje/precizno evaluira, slijedi nakon opservacijskih istraživanja/nekontroliranih pokusa

  4. Kako generirati slijed pridruživanja • Jednostavna randomizacija (generator slučajnih brojeva) • Korištenje blokova zbog podjednakih skupina • Eksplicitna kontrola kovarijabli: stratifikacija ili minimizacija

  5. Kako ne devalvirati randomizaciju • Zatajivanje pridruživanja (allocation concealment)- meta analize: vrlo važno, uvijek moguće • Maskiranje ispitanika, medicinskog osoblja, statističara; nekad nije moguće • ITT (intention-to-treat) analiza, žrtvuje se eventualni lažno negativan rezultat da se ne naruši randomska usklađenost; za nuspojave ne, već- PP (per protocol) analiza

  6. Faze izvođenja RCT Nakon planiranja (pilot pokusa) i dobivanja dopuštenja 1. Izbor ispitanika 2. Mjerenje karakteristika 3. Randomizacija 4. Intervencija 5. Praćenje (evaluacije) ishoda, mjerenja Slijedi izvješće, po strogim pravilima (CONSORT)

  7. Kako izvijestiti rezultate RCT (1) • CONSORT guidelines • Dijagram toka • Karakteristike ispitne i kontrolne skupine: tablica 1. + komentar uspjeha randomizacije, razlike ne testirati formalno (no p-values in table 1!) • Tablica 2: Jednostavni, neposredni rezultati ITT analize glavnih ishoda (x+-95%CI) • Ako je suradljivost bila slaba i (ili) varirala između skupina, ili ako je bilo dosta izgubljenih podataka, prikaži i PP rezultate

  8. Kako izvijestiti rezultate RCT (2) 5. Ako randomizacija nije perfektna, prikaži i usklađene rezultate: (a) kontinuirane varijable: ANOVA, multipla regresija (b) kategorije: Mantel-Haenszelov test (jedna kovarijabla) ili logistička regresija (više kovarijabli), Poissonova regresija (za stope), Coxova regresija (preživljenje) 6. Ako su planirane/opravdane, prikaži i analize po podskupinama 7. Prikaži nuspojave i neželjene učinke (bez formalnog testiranja; PP prikaz) 8. Analiziraj i (eventualne) sekundarne ishode

  9. Simple 2-arm trial • Patients are randomised to study or control group Study population Study Control (50%) (50%) • Can have n:m rather than 1:1 allocation • E.g. 2:1 active:control

  10. Why extend simple 2-arm RCT? • #1: Compare >1 intervention • May be the ‘more’ ethical design • Can be cheaper to do 1 trial investigating 2 interventions than two separate trials • #2: simple RCTs exclude those patients with strong preferences • With a chance of getting 1 of 2 interventions more subjects may be willing to be randomised • With data on those unwilling to be randomised the trial may be more generalisable • #3: Contamination of treatment effects? • So instead of randomising a patient, randomise a family, or a GP surgery, or a hospital – cluster randomisation

  11. RCTs for more than one intervention • Multi-arm trials • Factorial designs • Crossover designs

  12. Multi-arm trial • Simplest extension to simple RCT • Patients randomised to two or more study groups or control group Study population Intervention 1 Intervention 2 Control (33%) (33%) (33%)

  13. Advantages: still simple to design allows head to head comparisons Disadvantages: requires a larger overall sample size to achieve the same level of power Multiple comparisons rarely have power to detect significant differences between the interventions Multi-arm trial (2)

  14. Factorial design (1) • Compares more than one intervention • Multiple layers of randomisation • Notation: • 2x2 - indicates 2 trts each with 2 levels • 2x2x2 - indicates 3 trts each with 2 levels • Fractional factorial designs • Many treatments, patients get a selection

  15. Factorial design (2) - 2x2 example • Vitamin D and/or calcium supplementation to prevent re-fracture (RECORD)

  16. Advantages: reduced loss of power compared with multi-arm trial very efficient - ‘two trials for the price of one’ allows possibility of exploring interaction effects Disadvantages: requires no interaction between treatments for full power* more difficult to operationalise Factorial designs (3) * There are however studies with a factorial design which specifically anticipate an interaction

  17. Second period B A Crossover trials • Useful when studying patients with a chronic (long-term) disease • Allows patients to receive both treatments sequentially • “patient acts as their own control” First period A B

  18. Crossover trial - example • Renal dialysis - each patient receives dialysis 3 times a week • Two types of dialysis solution available - acetate and bicarbonate • Thought that bicarb may reduce nausea and other symptoms • Crossover trial: • each patient does a month on one solution followed by month on the other • for each patient, the starting solution is assigned randomly

  19. Advantages: requires fewer patients as each get both treatments background “noise” reduced as comparison is within-patient Disadvantages: must be no “carryover” effect Washout periods > 2 periods? Loss to follow up can only be used for short term outcomes e.g. symptom control requires chronic and stable illness - patients require same level of illness for both treatments Crossover trials

  20. Why extend simple RCT - reason 2 • Some RCTs compare very different treatments eg surgery vs. long term medication • Patients with strong preferences not willing to be randomised • Simple RCTs have to exclude those patients

  21. Patient preference trials • If patients have a strong preference for a therapy they get that therapy • If no strong preference, patients randomised • Primary analysis still based on randomised groups • Two studies – a randomised study and an observational study

  22. Patient preference trial - example • Two treatments for reflux disease: • medical management • surgical management • Four trial groups: • prefer surgery • prefer medical • randomised to surgery • randomised to medical

  23. Advantages: recruitment maximised motivational factors maximised in the preference groups motivational factors equalised in the randomised groups results potentially more generalisable Disadvantages: harder to analyse and possibly to interpret may be unequal distribution across the four trial groups more complex informed consent Patient preference trials

  24. Why extend a simple RCT - reason 3 • There is a worry that there will be contamination of treatments across patients eg trial comparing two dietary interventions - what if 2 members of same family randomised to different diets? • Potential solution - randomise intact groups (families) rather than individuals

  25. Cluster randomised trial • Intact groups (known as clusters) rather than individuals randomised to each intervention • Unit of randomisation should minimise risk of contamination eg family, practice, hospital ward

  26. Randomise Providers Control Experimental A cluster RCT

  27. Cluster trials - issues • Outcomes within a group of patients, or cluster, may be more similar than those across clusters - they are no longer ‘independent’ • A statistical measure of this similarity within clusters is the intra-cluster correlation • Because patients not independent, study loses power • The larger the intra-cluster correlation the larger the inflation required to the sample size to redress the loss of power

  28. Advantages: minimises contamination between groups may be easier to organise practically Disadvantages: requires larger trial patients within clusters not independent standard analysis techniques not appropriate analysis more complex Cluster trials

  29. Different model for randomisation (1) • Standard procedure - get informed consent then randomise • Potential problems: • patients may withdraw if they do not get the treatment they hoped for • patients may comply poorly if they get the control treatment - thinking the experimental treatment is better anyway

  30. Different model for randomisation (2) • Alternative approach - Zelen’s design: • randomise before obtaining consent • only seek consent from those randomised to experimental treatment • ‘control’ patients not approached for consent • Debate surrounds ethics of this approach - eg MRC do not accept this design as ethical

  31. Advantages: does not raise hopes of a new treatment which can then be denied by randomisation may avoid downward bias in those allocated to ‘control’ Disadvantages: ethics are debateable Zelen’s design

More Related