1 / 23

Theory Update on Electromagnetic Probes II

Theory Update on Electromagnetic Probes II. Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA CATHIE/TECHQM Workshop BNL (Upton, NY), 16.12.09. 1.) Intro: Probing Strongly Interacting Matter. Electromagnetic Probes:

radha
Download Presentation

Theory Update on Electromagnetic Probes II

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Theory Update on Electromagnetic Probes II Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA CATHIE/TECHQM Workshop BNL (Upton, NY), 16.12.09

  2. 1.) Intro:Probing Strongly Interacting Matter • Electromagnetic Probes: • penetrating:lEM >> Rnuc • Equilibrium: • EM spectral function • Im PEM(q0,q;mB,T) • Information via EM Spectral Function: • degrees of freedom (parton vs. hadron) • transport properties (EM conductivity, susceptibility) • relation to order parameters (chiral symmetry) • measure of temperature

  3. Outline 1.) Introduction 2.) EM Emission + Vector Mesons  Thermal Rate and Conductivity  Chiral Symmetry Breaking  r and a1 Meson in Medium 3.) Dilepton Spectra in A-A  Thermal Emission at SPS  The RHIC Problem 4.) Conclusions

  4. e+ e- γ 2.1 Thermal Electromagnetic Emission EM Current-Current Correlation Function: Thermal Dilepton and Photon Production Rates: Im Πem(M,q) Im Πem(q0=q) r-meson dominated Low Mass: ImPem~ [ImDr + ImDw /10 + ImDf /5]

  5. 2.2 Electric Conductivity • pion gas (chiral pert. theory) • sem / T ~ 0.01 for T ~ 150-200 MeV [Fernandez-Fraile+Gomez-Nicola ’07] • quenched lattice QCD • sem / T ~ 0.35 for T = (1.5-3) Tc [Gupta ’04] • soft-photon limit

  6. 2.3 Chiral Symmetry Breaking + Hadron Spectrum Condensates fill QCD vacuum: Axial-/Vector Correlators Constituent Quark Mass “Data”: lattice [Bowman et al ‘02] Theory: Instanton Model [Diakonov+Petrov; Shuryak ‘85] pQCD cont. • Weinberg Sum Rule(s) • chiral breaking:|q2| ≤ 1 GeV2 • Gellmann-Oakes-Renner: • mp2 fp2 = mq‹0|qq|0› -

  7. 2.4 r-Meson in Medium: Hadronic Interactions > rB /r0 0 0.1 0.7 2.6 > rMeson “Melting” Switch off Baryons [RR,Wambach et al ’99] [Chanfray et al, Herrmann et al, RR et al, Koch et al, Klingl et al, Mosel et al, Eletsky et al, Ruppert et al, Sasaki et al …] Dr (M,q;mB ,T) = [M 2 - mr2 -Srpp -SrB -SrM ] -1 r-Propagator: B*,a1,K1... r Sp r SrB,rM= Selfenergies: Srpp= N,p,K… Sp Constraints:decays:B,M→ rN, rp, ... ; scattering:pN→rN, gA, …

  8. 2.4.2 r Meson in Cold Nuclear Matter: JLab Nuclear Photo-Production: r e+ e- g + A → e+e- X Eg=1.5-3GeV g [CLAS/JLab ‘08] Theoretical Approach: [Riek et al ’08] in-medium r spectral function elementary production amplitude + Fe-Ti r g N M[GeV] Mee[GeV]

  9. p Sp Sp Sp r Sr Sr Sr 2.6 Axialvector in Medium: Dynamical a1(1260) p a1 resonance + + . . . = Vacuum: r In Medium: + + . . . • in-medium p + r propagators • broadening of p-r scattering • amplitude [Cabrera,Jido,Roca+RR ’09]

  10. e+ e- q q _ Thermal Sources:Relevance: - Quark-Gluon Plasma: high mass + temp. qq → e+e-, …M >1.5GeV, T >Tc - Hot + Dense Hadron Gas: M ≤ 1 GeV p+p- → e+e-, … T ≤ Tc - e+ e- p- p+ r(770) 3.) Dilepton Spectra in A-A Thermal Dilepton Emission Rate: e+ e- g* Im Πem(M,q;mB,T) Im Πem ~ Im Dr

  11. - [qq→ee] [HTL] 3.1 Dilepton Rates: Hadronic vs. QGPdRee /dM2 ~ ∫d3q f B(q0;T) ImPem • Hard-Thermal-Loop [Braaten et al ’90] • enhanced over Born rate • Hadronic and QGP rates • “degenerate” around~Tc • Quark-Hadron Duality at all M?! • ( degenerate axialvector SF!)

  12. 3.2 Dilepton “Excess” Spectra at SPS Thermal Emission Spectrum: • “average” Gr (T~150MeV) ~ 350-400 MeV • Gr (T~Tc) ≈ 600 MeV → mr • fireball lifetime: tFB ~ (6.5±1) fm/c [van Hees+RR ‘06, Dusling et al ’06, Ruppert et al ’07, Bratkovskaya et al ‘08]

  13. 3.2.2 NA60 Data vs. In-Medium Dimuon Rates Mmm [GeV] [van Hees +RR ’07] [RR,Wambach et al ’99] • acceptance-corrected data directly reflect thermal rates!

  14. 3.2.3 NA60 Excess Spectra vs. Theory [CERN Courier Nov. 2009] • Thermal source does very well • Low-mass enhancement very sensitive to medium effects • Intermediate-mass: total agrees, decomposition varies

  15. Intermediate Mass Region 3.2.4 NA60 Dimuons: Sensitivity to QGP and Tc • vary critical and chemical-freezeout temperature (Tfo ~ 130 MeV fix) “EoS-B” “EoS-C” • spectral shape robust: “duality” of dilepton rate around “Tc”! • intermediate mass (M>1GeV): QGP vs. hadronic depends on Tc

  16. 3.2.5 EM Probes in Central Pb-Au/Pb at SPS Di-Electrons [CERES/NA45] Photons [WA98] [Turbide et al ’03, van Hees+RR ‘07] • consistency of virtual+real photons (same Pem) • very low-mass di-electrons ↔ (low-energy) photons [Srivastava et al ’05, Liu+RR ‘06]

  17. 3.3 Low-Mass Dileptons at RHIC: PHENIX Inclusive Mass Spectrum Centrality Dependence of Excess • Successful approach at SPSfails at RHIC • Excess concentrated: - at low mass • - in central collisions • - at low pt (Teff ~ 100 MeV)

  18. Disoriented Chiral Condensate (DCC)? [Z.Huang+X.N.Wang ‘96] - “baked Alaska” ↔ small T - rapid quench+large domains ↔ central A-A - ptherm + pDCC → e+ e- ↔ M~0.3GeV, small pt [Bjorken et al ’93, Rajagopal+Wilczek ’93] 3.3.2 Origin of the Low-Mass Excess in PHENIX? • Soft QGP Radiation? - small Teff slope - why not in semi-central? - generic space-time argument:  maximal emission aroundTmax ≈ M / 5.5 (forImPem =const) Low mass (M<1GeV): Tmax < 200MeV

  19. 3.3.3 Low-Mass Excess from DCC? Dileptons from a DCC-DCC annihilation [Witham+RR ‘08] • too small • DCC-thermal to be evaluated …

  20. 3.3.4 Comparison of Thermal Emission Calculations Chiral Reduction + Hydro Hadronic Many-Body + Fireball • Decomposition at M=0.5(0.2)GeV: Hadronic LO-QGP NLO-QGP • Dusling+Zahed 6 (6) 5.5 (2) 10 (25) • RR+van Hees 20 (15) 4 (3) --

  21. 4.) Conclusions • Electromagnetic Probes • - versatile tool (spectral fcts., transport, temp., lifetime!) • Chiral Symmetry Breaking (Restoration) • - chiral partners: r - a1 (degeneracy at Tc) • Thermal Dilepton Rates • - melting r toward Tc : quark-hadron duality?! • hadron liquid?! • Dilepton Spectra • - quantitative agreement at SPS • - failure at RHIC thus far (QGP not favored; DCC??)

  22. 2.3.2 Acceptance-Corrected NA60 Spectra Mmm [GeV] Mmm [GeV] • more involved at pT>1.5GeV: Drell-Yan, primordial/freezeout r , …

  23. X.) Example for Comprehensive Analysis: NA60 Dileptons Charmonium Flow Charmonium Production  thermal medium radiating from around Tc with meltedr , well-boundJ/y with large collectivity

More Related