1.52k likes | 1.94k Views
Paediatric Orthopaedic Emergencies. Kelly Millar. Overview. Traumatic Emergencies Fractures Dislocations Medical Emergencies Infectious Developmental . Developing Bone - Anatomy. Epiphysis Physis Metaphysis Diaphysis. E. P. M. D. The Developing Bone. Blood supply
E N D
Paediatric Orthopaedic Emergencies Kelly Millar
Overview • Traumatic Emergencies • Fractures • Dislocations • Medical Emergencies • Infectious • Developmental
Developing Bone - Anatomy • Epiphysis • Physis • Metaphysis • Diaphysis E P M D
The Developing Bone • Blood supply • Epi / Meta arteries • Infancy: transphyseal • Physis • Multiple zones • Rapidly dividing • Not yet calcified
The Developing Bone • Thicker periosteum • Bone is more elastic • Allows for unique fracture types • Torus (buckle) • Greenstick • Bowing • Avulsion before tendon rupture
Pediatric Fractures • Heal more rapidly than adults • Capable of remodeling deformity • What favors remodeling? • Younger > older • Closer to physis > midshaft • Only angulation in the plane of the adjacent joint will remodel
Forearm Fractures • Most common site of fracture (50% of all #) • Physeal injuries of the distal radius (+/- ulna) • Metaphyseal fractures radius/ulna • Midshaft radius/ulna • All usually fairly straightforward to identify – the question is which ones can you leave alone, which need reduction, and which need ortho!
Usually Salter I or II Usually displaced posteriorly (colles-type) Smith’s-type less common Complications uncommon Physeal Injuries of the Radius
Physeal Injuries of the Radius • Reduction? • Want physeal injuries close to anatomic • Normally have 0-11º volar tilt at distal radius • Want angulation at least neutral and minimum displacement • Needs good molding – about 11% will slip • Call ortho? • Unable to correct dorsal angulation • More than 10% displaced
Metaphyseal Injuries of the Radius • Buckle fractures • Greenstick • Complete
Buckle vs Greenstick • Be careful !!! • Buckle # • Cortex on opposite side must be unaffected • These are stable fractures • Greenstick # • Cortex # on one side and bent on other • These are unstable – they tend to move back to the position of maximal deformity
Distal Forearm - Buckle # • Stable Fractures • Management controversial: • Immobilize? 60% (PEM) 70% (ortho) • Cast? 60% (PEM) 50% (ortho) • Many opt for splint • Who might benefit from cast? More severe buckle, v. young, v. active • How long do we immobilize? 2-3 wks Wrist buckle fractures. A Plint et al. CJEM March 2003
Does this need a reduction?What is acceptable angulation in the distal radius? 12 yo male
Distal Forearm - Greenstick & Complete # • Reduction? • Radial or ulnar angulation • Rotational deformity • Infants: >30º angulation • Children: >15º angulation • Peripubertal: need 2-3 yrs growth to remodel • Practically, most of us are more aggressive
How about this midshaft #?What is acceptable angulation in a midshaft #? 8 yo female
Midshaft Radius/Ulna Injuries • Reduction? • Any radial / ulnar angulation • Any rotational deformity • Infants: >25º • Children: >10º • Peripubertal: need 2-3 years to remodel • Acceptable displacement? • If young, as much as 90%
Forearm Reductions & Casting • Greenstick #: Many advocate breaking far cortex to prevent recurrence of deformity (but run the risk of bayonet) • Remember that thick periosteum is your friend !! • Good 3 point molding essential • Apply above elbow cast for all reductions
What about Bayoneted # ? When can you give them a go?
Bayoneted Fractures • Prepubecsent ~ if distal or midshaft, can give it a try ~ often difficult to get ulna back on (most of us discuss the options with the parents) • Peripubertal / Teens • may consider trying metaphyseal # • Midshaft or proximal – refer to ortho
Is this a problem? 2 yo male
Bowing deformity • These will NOT remodel !! • Must be reduced if visible deformity or restricted ROM – but difficult • If attempting reduction – check for full supination & pronation • Need early ortho f/u
Galeazzi Fracture • Radial fracture + distal radio-ulnar dislocation • Rare in kids • Always call ortho!
Elbow • Supracondylar # • Lateral condyle # • Medial epicondyle # • Proximal radius #
Ossification Centers of The Elbow • C capitellum 2 mo – 2 yrs • R radial head 3 – 6 yrs • I “internal” m. epicondyle 4 – 7 yrs • T trochlea 8 – 10 yrs • O olecranon 8 – 10 yrs • E “external” l. epicondyle 10 – 13 yrs
Approach to reading the film • Is the film adequate -look for the hourglass • Fat pads • anterior “sail sign” (bulging fat pad) • posterior fat pad (always abnormal) • Anterior humeral line • Radial line
If you do not have an adequate lateral: • You can miss the fat pad signs • You may miss a fracture! • You cannot count on the anterior humeral line • You may overcall a supracondylar fracture!
A flat anterior fat pad is often present in normal children • A bulging anterior fat pad “sail sign” is always abnormal • A visible posterior fat pad is always abnormal
Anterior Humeral Line Should pass through the middle third of the capitellum in the lateral view
Radial Line Should bisect the radius in ALL views
Supracondylar Fracture • 75% of elbow #s • 95% due to FOOSH • Classification: • Type 1 – non-displaced / minimally displaced • Type 2 – displaced, but hinged on posterior cortex (may be rotated as well) • Type 3 – completely displaced, posterior cortex disrupted • Beware of compression of medial column
Supracondylar Fracture Management • Type I • Backslab at 90º, ortho in 1 week • Type II • If mild angulation (<10º) and no rotation, may attempt closed reduction by flexing at elbow, then placing in backslab at 90º • When to call ortho: • All type III’s, any rotation, type II with ++angulation or failed reduction, neurovascular compromise
What are the common complications of supracondylar fractures?
Supracondylar Fracture Complications • Very high rate of complications!! • Acutely: • Neurologic injury (8-15%) • Ant interosseuous branch of median n • Radial and ulnar nerves also may be involved • Radial artery (2% overall, 50% in Type III) • Compartment Syndrome • Longer term: • Cubitus varus, Volkmann’s ischemic contract.
Lateral Condyle Fracture • 15% of elbow #s • Usually Salter-Harris IV • Peak age 4-10 years • If displaced <2mm, backslab at 90º, early ortho f/u as inherently unstable • If displaced >2mm, pinned
Medial Epicondyle Fracture • Usually seen in adolescent boys • Do not involve the joint surface • Check for ulnar nerve injury • 50% associated with dislocation – • If diplacement < 4mm – backslab • If displacement > 5 mm - pinned