1 / 39

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration. Outline. I. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions. Photosynthesis. Method of converting sun energy into chemical energy usable by cells

randall
Download Presentation

Photosynthesis and Cellular Respiration

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Photosynthesis and Cellular Respiration

  2. Outline I. Photosynthesis A. Introduction B. Reactions II. Cellular Respiration A. Introduction B. Reactions

  3. Photosynthesis • Method of converting sun energy into chemical energy usable by cells • Autotrophs: self feeders, organisms capable of making their own food • Photoautotrophs: use sun energy e.g. plants photosynthesis-makes organic compounds (glucose) from light • Chemoautotrophs: use chemical energy e.g. bacteria that use sulfide or methane chemosynthesis-makes organic compounds from chemical energy contained in sulfide or methane

  4. Photosynthesis • Photosynthesis takes place in specialized structures inside plant cells called chloroplasts • Light absorbing pigment molecules e.g. chlorophyll

  5. Overall Reaction 6CO2 + 6H2O → C6H12O6 + 6O2 carbon dioxide water light energy sugar oxygen • Carbohydrate made is glucose • Water is split as a source of electrons from hydrogen atoms releasing O2 as a byproduct • Electrons increase potential energy when moved from water to sugar therefore energy is required

  6. Light-dependent Reactions • Overview: light energy is absorbed by chlorophyll molecules - this light energy excites electrons and boosts them to higher energy levels. • They are trapped by electron acceptor molecules that are poised at the start of a neighboring transport system. The electrons “fall” to a lower energy state, releasing energy that is harnessed to make ATP

  7. Energy Shuttling • Recall ATP: cellular energy-nucleotide based molecule with 3 phosphate groups bonded to it, when removing the third phosphate group, lots of energy liberated = superb molecule for shuttling energy around within cells. • Other energy shuttles-coenzymes (nucleotide based molecules): move electrons and protons around within the cell NADP+, NADPH NAD+, NADP FAD, FADH2

  8. Light-dependent Reactions • Photosystem: light capturing unit, contains chlorophyll, the light capturing pigment • Electron transport system: sequence of electron carrier molecules that shuttle electrons, energy released to make ATP • Electrons in chlorophyll must be replaced so that cycle may continue-these electrons come from water molecules, Oxygen is liberated from the light reactions • Light reactions yield ATP and NADPH used to fuel the reactions of the Calvin cycle (light independent or dark reactions)

  9. Calvin Cycle (light independent or “dark” reactions) • ATP and NADPH generated in light reactions used to fuel the reactions which take CO2 and break it apart, then reassemble the carbons into glucose. • Called carbon fixation: taking carbon from an inorganic molecule (atmospheric CO2) and making an organic molecule out of it (glucose) • Simplified version of how carbon and energy enter the food chain

  10. Harvesting Chemical Energy • So we see how energy enters food chains… (autotrophs) we can look at how organisms use that energy to fuel their bodies. • Plants and animals both use products of photosynthesis (glucose) for metabolic fuel • Heterotrophs: must take in energy from outside sources, cannot make their own e.g. animals • When we take in glucose (or other carbs), proteins, and fats - these foods don’t come to us the way our cells can use them

  11. Cellular Respiration Overview • Transformation of chemical energy in food into chemical energy cells can use: ATP • These reactions proceed the same way in plants and animals. Process is cellular respiration • Overall Reaction: C6H12O6 + 6O2→ 6CO2 + 6H2O sugar oxygen energy carbon dioxide water out

  12. takes place in two parts of the cell: Where Does Cellular Respiration Takes Place? Glycolysis occurs in the Cytoplasm Krebs Cycle & ETC Takeplace in the Mitochondria

  13. Review of Mitochondria Structure Smooth outer Membrane Folded inner membrane Folds called Cristae Space inside cristae called the Matrix

  14. Cellular Respiration Overview • Breakdown of glucose begins in the cytoplasm: the liquid matrix inside the cell • At this point life diverges into two forms and two pathways • Anaerobic cellular respiration (fermentation) • Aerobic cellular respiration

  15. Cellular Respiration Reactions • Glycolysis • Series of reactions which break 6-carbon glucose molecule into two 3-carbon molecules “pyruvate” • Process is an ancient one-all organisms from simple bacteria to humans perform it the same way • Yields 2 ATP molecules for every one glucose molecule broken down • Yields 2 NADH per glucose molecule

  16. Glycolysis Summary 1. Takes place in the Cytoplasm 2. Anaerobic (Doesn’t Use Oxygen) 3. Requires input of 2 ATP 4. Glucose split into two molecules of Pyruvate or Pyruvic Acid 5. Produces 2 NADH and 4 ATP 6. Pyruvate is oxidized to Acetyl CoA and CO2 is removed

  17. Anaerobic Cellular Respiration • Some organisms thrive in environments with little or no oxygen • Marshes, bogs, gut of animals, sewage treatment ponds • No oxygen used = anaerobic “not aerobic” • Results in no more ATP, final steps in these pathways serve ONLY to regenerate NAD+ so it can return to pick up more electrons and hydrogens in glycolysis. • End products such as ethanol and CO2 (single cell fungi (yeast) in beer/bread) or lactic acid (muscle cells)

  18. Fermentation (2 forms) Occurs when O2 NOT present (anaerobic) 1. Called Lactic Acid fermentation in muscle cells (makes muscles tired) 2. Called Alcoholic fermentation in yeast (produces ethanol and CO2) Nets only 2 ATP

  19. Aerobic Cellular Respiration • Oxygen required = aerobic • 2 more sets of reactions which occur in a specialized structure within the cell called the mitochondria • 1. Kreb’s Cycle • 2. Electron Transport Chain

  20. A Little Krebs Cycle History Discovered by Hans Krebs in 1937 He received the Nobel Prize in physiology or medicine in 1953 for his discovery Forced to leave Germany prior to WWII because he was Jewish

  21. Kreb’s Cycle • Completes the breakdown of glucose • Takes the pyruvate (3-carbons) and breaks it down, the carbon and oxygen atoms end up in CO2 and H2O • Hydrogens and electrons are stripped and loaded onto NAD+ and FAD to produce NADH and FADH2 • Production of only 2 more ATP but loads up the coenzymes with H+ and electrons which move to the 3rd stage

  22. Krebs Cycle Summary Requires Oxygen (Aerobic) Cyclical series of oxidation reactions that give off CO2 and produce one ATP per cycle Turns twice per glucose molecule Produces two ATP Takes place in matrix of mitochondria

  23. Krebs Cycle Summary Each turn of the Krebs Cycle also produces 3NADH, 1FADH2, and 2CO2 Therefore, For each Glucose molecule, the Krebs Cycle produces 6NADH, 2FADH2, 4CO2, and 2ATP

  24. Kreb Cycle ATP NETS: 3NADH, 1ATP, 1FADH2, & 2CO2

  25. Electron Transport Chain • Electron carriers loaded with electrons and protons from the Kreb’s cycle move to this chain-like a series of steps (staircase). • As electrons drop down stairs, energy released to form a total of 32 ATP • Oxygen waits at bottom of staircase, picks up electrons and protons and in doing so becomes water

  26. 34 ATP Produced H2O Produced Occurs Across Inner Mitochondrial membrane Uses coenzymes NAD+ and FAD+ to accept e- from glucose NADH = 3 ATP’s FADH2 = 2 ATP’s Electron Transport Summary

  27. Electron Transport Chain Animation

  28. Glycolysis Diagram

  29. Energy Tally • 36 ATP for aerobic vs. 2 ATP for anaerobic • Glycolysis 2 ATP • Kreb’s 2 ATP • Electron Transport 32 ATP 36 ATP • Anaerobic organisms can’t be too energetic but are important for global recycling of carbon

More Related