1 / 9

Systems with No Solution or Infinitely Many Solutions

Systems with No Solution or Infinitely Many Solutions. September 15, 2014 Pg. 21 in Notes. Warm-Up (pg. 20). Solve the following system of equations using the elimination method. 7x + 4y = 2 9x – 4y = 30 Questions on Friday’s Assignment?. No Solution/Infinitely Many Solutions.

Download Presentation

Systems with No Solution or Infinitely Many Solutions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Systems with No Solution or Infinitely Many Solutions September 15, 2014 Pg. 21 in Notes

  2. Warm-Up (pg. 20) • Solve the following system of equations using the elimination method. • 7x + 4y = 2 • 9x – 4y = 30 Questions on Friday’s Assignment?

  3. No Solution/Infinitely Many Solutions • Title: page 21

  4. Essential Question • How do you know if a system has one solution, no solution, or infinitely many solutions?

  5. Systems with One Solution • Solution will be an ordered pair.

  6. Systems with No Solution (NS) • When solving, statement is untrue. • Example: y = 3x + 1 6x – 2y = 5 Let’s use substitution: 6x – 2(3x + 1) = 5 6x – 6x – 2 = 5 -2 = 5 The variable canceled and this statement is untrue, so this system has no solution.

  7. Systems with Infinitely Many Solutions • When solving, statement is always true. • Example: 2x + 3y = 6 -4x – 6y = -12 Let’s use elimination: 8x + 12y = 24 -8x – 12y = -24 0 = 0 Each term canceled and this statement is always true, so this system has infinitely many solutions.

  8. Practice – Determine whether each of the following systems of equations has one solution, no solution, or infinitely many solutions. • 24x – 27y = 42-9y + 8x = 14 • 3/2 x + 9 = y4y – 6x = 36 • 7y + 42x = 5625x – 5y = 100 • 3y = 2x-4x + 6y = 3 • 7x + y = 1328x + 4y = -12 • 2x – 3y = -153y – 2x = 15 • 8y – 24x = 649y + 45x = 72 • 2x + 2y = -104x – 4y = -16

  9. Reflection • If no solution means there is no ordered pair that will make both equations true, what will that look like when graphed? • If infinitely many solutions means any ordered pair that makes one equation true will make the other equation true as well, what will that look like when graphed?

More Related