1 / 20

Filippo Bencivenga

Inelastic Ultraviolet Scattering with μeV energy resolution: applications for the study of disordered systems. Filippo Bencivenga. OUTLINE Collective dynamics in disordered systems Inelastic Ultraviolet Scattering (IUVS) at ELETTRA Experimental highlights (1)

rebeccalong
Download Presentation

Filippo Bencivenga

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Inelastic Ultraviolet Scattering with μeV energy resolution: applications for the study of disordered systems Filippo Bencivenga

  2. OUTLINE Collective dynamics in disordered systems Inelastic Ultraviolet Scattering (IUVS) at ELETTRA Experimental highlights (1) • Sound absorption in vitreous SiO2 Experimental highlights (2) • Structural relaxation in water under pressure Outlook

  3. Collectivedynamics in disorderedsystems Characteristic lengths x  0.1 nm ~ Lattice space in crystals dj 10 nm Topological Disorder x,djtj,tD Characteristic times tD0.1 ps ~ Inverse Debye frequency tj0.1 ÷ ∞ ps Relaxation times

  4. Collectivedynamics in disorderedsystems Density Fluctuations Spectrum: S(Q,E) x Characteristic times tD tD0.1 ps dj ILS IXS tj0.1 ÷ ∞ ps Raman scattering 5000 m/s Characteristic lengths tj 500 m/s IUVS tj x  0.1 nm INS dj 10 nm Brillouin scattering Q  0.1 ÷ 1 nm-1

  5. IUVS beamline: BL10.2 @ ELETTRA 1015 ph/s/0.1%BW • Main features of IUVS beamline: • a) Beam @ sample: •  Ei = 4 ÷ 12 eV • 1010 ÷ 1013 ph/s • 1x0.5 mm2 spot • b) DE ≈ 7÷20 meV • c) Eo-Ei ≈ ± 1000 meV • d) S(Q,E) in oneshot • e) “Easy” Q-change Heat Load +Focusing Sync. Ei< 15 eV Figure-8 undulator Band pass filters Ei= 4 ÷ 12 eV DEi ≈ 3 eV 8 m Focusing mirror Diffraction grating + slit Sample 3 m VERTICAL d = 32 mm b = 70° m ≈ 200 H ≈ 50 mm Collection mirror 2q=172° Q = 2Ein(Ei)sin(q)/hc Q ≈ 0.05 ÷ 0.15 nm-1 CCD camera (512x2048 pixels; 13.5x13.5 mm2) f(Eo) DEi/Ei ≈ 10-6 Eo-Ei ≈ ± 1000 meV DEo/Eo ≈ 10-6 3 m L  (Eo-Ei)/Ei

  6. Experimentalhighlights (1) Sound absorption in vitreous SiO2 1400 K 1100 K 300 K IXS ? T-independent sound absorption: structural origin PRL 83, 5583 (1999) e-a·x ILS 300 K GL = hcs/2pa Anharmonicity: acoustic phonons coupled with thermal vibrations PRL 82, 1478 (1999) 5 K

  7. Anharmonic contribution PRL92 (2004); PRL97 (2006) Experimentalhighlights (1) Sound absorption in vitreous SiO2 Elastic constants disorder1 Characteristic length: d~ 2p/Q* ~ 50 nm 300 K Q2 Structural contribution IXS d ~ disorder of the elastic constants ? IUVS or GL Characteristic frequency: EL(Q*) ~ 0.5 meV ILS Q*EL(Q*) Q* GL Q4 Q2 EL ~ 0.5 meV ~ EBP? 1) PRL 98 (2007)

  8. Experimentalhighlights (1) Sound absorption in vitreous SiO2 IXS + 0.1 meV ? ET(2Q*) ~ EBP 2Q*? Q*~ 2p/d ? GT ET(Q*) ~ 0.5 EL (Q*) < EBP GT(Q*) same trend as GL (Q*) ? Yes No d ~ elastic constant’s disorder Anomaly probably related to EBP

  9. 1 bar r hS cT cs 1500 bar 400 bar Quantitative agreement with Mode Coupling Theory Experimental determination of structural relaxation time (t) Experimental highlights (2) Water anomalies Water anomalies described by a singuratity free scenario1 - Mode Coupling Thory (MCT) - TM Tg IUVS spectra HDA Critical-like behavior? + LDA 2000 bar Viscoelastic framework Pressure (bar) IUVS + IXS results: pressure (i.e. density) independence of t Mode Coupling Theory: t~ (T-T0)g 2.3 +/- 0.2 Temperature (K) 220 +/- 10 K 1) PRE 53 (1996); PRL 49 (1982)

  10. r hS cT cs Systematic determination of t as a function of P and T Experimental highlights (2) Water anomalies T = 298 K; Q = 0.07 nm-1 Liquid-liquid phase transition hypothesis1 d(E) Tg TH TH TM TM DHO CP2 CP2 HDA HDL Critical-like behavior? Critical-like behavior? LDL LDA Pressure (bar) IXS IUVS Temperature (K) 1) Nature 360 (1992); Nature 396 (1998)

  11. Experimental highlights (2) Structural relaxation in water under pressure E(r) = E(r0) + a(r-r0) Free volume reduction at high density Arhenius trend (r-dependent) t ~ exp{(rcp-r)-1} t= t(r) exp{E(r)/kBT} Expected trend 1 bar 4 kbar • a = ∂E/∂r> 0 Stiffer local structure @ high density

  12. Experimental highlights (2) Structural relaxation in water under pressure Further r-dependence t= t(r) exp{E(r)/kBT} t~ exp{-br}exp{E(r)/kBT} t= t0exp{[E(r0)+ (a-kBbT)(r-r0)]/kBT} ∂S/∂r

  13. Experimental highlights (2) Structural relaxation in water under pressure (∂S/∂r)(rHDA-rLDA) = 51 ± 3 J/mol k • kBb = ∂S/∂r > 0 Further r-dependence t= t(r) exp{E(r)/kBT} More entropic local structure @ high density ∂A/∂r = 0  T = 209 ± 12 K t~ exp{-br}exp{E(r)/kBT} Qualitative agreement with liquid-liquid phase transition hypothesis Quantitative agreement with liquid-liquid phase transition hypothesis t= t0exp{[E(r0)+ (a-kBbT)(r-r0)]/kBT} ∂E/∂r ∂S/∂r ∂A/∂r

  14. Experimental highlights (2) Structural relaxation in water under pressure (∂S/∂r)(rHDA-rLDA) = 51 ± 3 J/mol k Further r-dependence t= t(r) exp{E(r)/kBT} ∂A/∂r = 0  T = 209 ± 12 K ∂A/∂T ? Larger T-range t~ exp{-br}exp{E(r)/kBT} IXS + 0.1 meV Q ~ 0.1 nm-1 t= t0exp{[E(r0)+ (a-kBbT)(r-r0)]/kBT} cs Q ~ 0.07 nm-1 Q ~ 0.025 nm-1 P = 1 bar ∂A/∂r

  15. Outlook Density Fluctuations Spectrum: S(Q,E) Characteristic times tD0.1 ps dj IXS ILS ? t0.1 ÷ ∞ ps Raman scattering 5000 m/s IUVS Characteristic lengths 500 m/s INS x  0.1 nm d  10 nm Brillouin scattering Q  0.1 ÷ 1 nm-1

  16. S(Q,E) (a.u.) F(Q,t) (a.u.) F(Q,t) (a.u.) E (meV) t (ps) t (ps) t-1 S(Q,E) (a.u.) E (meV) Outlook F(Q,t) S(Q,E) N2 T ~ TC Q = 2nm-1 Sound speed ~ 500 m/s H2O -10 °C / 1 bar Q = 2nm-1 t= 5 ± 3 ps

  17. Transient grating spectroscopy Excitation pulses (pump) Standing e.m. wave (Transient Grating) l0 Sample z Transmitted pulse Delayed pulse (probe) 2qs qd l1 qd qd (Dt) l0 Diffracted pulse (signal) r E2 t0 = 0 Detector z F(Q,t) L=l0/2sin qs Density wave periodicity: time Q = 4p sin qs/l0 qd = asin (qsl0/l1) t <r> 0

  18. Transient grating spectroscopy & FEL source Excitation pulses (pump) FEL source: l0 Sample FERMI@ELETTRA Delayed pulse (probe) Transmitted pulse l0~ 120 ÷ 10 nm 2qs l1 N ~ 1014 ph/pulse Diffracted pulse (signal) t = 0.2 ÷ 104 ps Dt ~ 50 ÷ 200 fs l0 Q = 4p sin qs/l0 Gaussian profiles Q = 0.01 ÷ 1.2 nm-1 Q-range: 2qS~ 9° 2qS~ 140° ~Dt 3-meters long delay line t-range:

  19. t > 100 fs Q< 1.2 nm-1 “Inelastic scattering” in the time domain Transient Grating Spectroscopy dj IXS ILS + Raman scattering 5000 m/s TIMER F.E.L. source IUVS 500 m/s TG INS = Brillouin scattering TIMER Ready by the end of 2010

  20. Acknoweledgements • C. Masciovecchio, A. Gessini, S. di Fonzo, • S.C. Santucci, D. Cocco, M. Zangrando and R. Menk (ELETTRA) • M.G. Izzo, A. Cimatoribus and D. Ficco (University of Trieste)

More Related