690 likes | 918 Views
Lecture 10: QD- microcavity in w eak coupling regime. Quantum Dots in Photonic Structures. Wednesdays , 17.00, SDT. Jan Suffczyński. Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskiego
E N D
Lecture 10: QD-microcavity in weakcoupling regime Quantum Dots in PhotonicStructures Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki
Reminder - microdisccavity Lord Rayleigh, “The problem of the whispering gallery,” Philosophical Magazine’1910. Total internalreflection
Photonic Crystal cavity formed by a point defect O. Painter et. al., Science (1999)
CdSe QDs attachedto a glass m-sphere Picture: M.V.Artemyev, I. Nabiev
CdSe QDs attachedto a glass m-sphere Here: CdSe-shell on glassm-sphere R=3.1 mm Wavelength (nm) modeseparation > GQD roomtemperatureemission Nano Lett. 1, 309 (2001)
Motivation – enhancement of photon extraction efficiency • Lowphotonextractionefficiency from unstructuredcrystal sin max = 1/n quantum dot
Motivation S. Strauf, Nature Photonics 2010
Motivation Desired: production method of coupled QD-cavity systems „on demand”
Qualityfactor of a planarcavity Reflectivity For a planarmicrocavity: ru ncav dcav rl
Qualityfactor of a planarcavity For a planarmicrocavity (GaAs/AlAsexample): Reflectivity ru ncav dcav rl Effectivecavitylength Effectiverefractive index of DBR Effectivemirror length Effectivenumber of mirror pairs
Qualityfactor of a planarcavity The reflectivity of a DBR consisting of m mirror pairs (n0equals 1 for the top mirror and n0 = nGaAs for thebottom mirror) AlAs/GaAs planar microcavity sample with 20/24 mirror pairs in the upper/lower DBR
Impact of the cavity on the spontaneousemissionrate Planarcavity (top view) Emitter Planarcavity A condition for a sizable Purcell effect: fully 3D cavity The idea: Lateralstructuring of a planarcavity D
From 2D to 3D photoniccrystal Planarmicrocavity= 1D confinement of the light Pillarmicrocavity= 3D confinement of the light DBR made of ZnSSe and MgS/ZnCdSesupperlattices Lohmeyer et al.
Qualityfactor of the micropillar Evolution of the microresonator resonance with diameter T. Riveraet al., APL ’1999 Twomain effects of the diameterreduction: blueshiftof the fundamentalmode linewidth increase due to the higheropticallosses
Qualityfactor of the micropillar • Q constant for large pillardiameters = close to the Q of the planar cavity Rivera et al.’1999 Thedegradation of Q below a certain criticaldiameter lossesdue to the scattering by the roughnessof the microresonators sidewalls + intrinsiclosses
Qualityfactor of the micropillar: losssources Top view Photon Escape Rate „Planar” losses + „Sidewall” losses ~ + + r dr dr: typically ~ 10 nm Scatteringlosses proportional tothe transverse mode intensityat the microresonatoredge:
Sidewallroughness GaAs/AlAsDBRs Roughness of the order of tens of nm
Qualityfactor of the micropillar: losssources Q decraese with pillardiameter - dominant contribution from egdescatteringlosses Reitzenstein et al.
Qualityfactor of the micropillar: implications for the Purcell factor The same Q planar Lowlosses High lossses Gayralet al. Non-lineardependence of Fp on Q factor in the limit of small pillardiameters
Qualityfactor of the micropillar: implications for the Purcell factor The same Q planar Lowlosses High lossses
Q factoroscillations Prediction: Lalanneet al.’2004 The appearanceof strong oscillations for high-Q micropillars in the small diameter regime
Q factoroscillations Prediction: Observation: experiment calculation Lalanneet al Lecampet al.’2007 The appearanceof strong oscillations for high-Q micropillars in the small diameter regime
Q factoroscillations Oscillationsattributed to a coupling of the fundamentalmode to higher-order pillar modes Basic idea: + +
Micropillareigenmodes vs diameter T. Jakubczyk et al. Blueshift of the mode with decreasingdiameterevidenced in photoluminescence
Photoluminescence - Micropillareigenmodes Experiment Simulation • Extended transfer matrix method: • Material absorption included • Equal emission intensity of each line assumed T. Jakubczyk et al.
Purcell enhancement of spontaneous emission Spontaneousemissionrate Purcell Factor
Reminder: Fermi’sGoldenRule • Spontaneousemissionrateis not aninherentproperty of the emitter • Sponteanousemissionrateproportional to: Dipol moment of the emitter Density of photonstates atemitterwavelength Electric field intensity atemitterposition mirror mirror Spontaneousemissioninhibited Spontaneousemissionenhanced
Purcell factor in realisticcase Qualityfactor Effectivemodevolume The observation of cavity QED phenomena relies on • high Q/ Veff • spatial and spectralmatching
QD-micropillar system – the firstrealization Out of cavity- referenceQDs In cavity– out of resonance In cavity– on resonance J. M. Gérard et al. ’ PRL1998 Measurements on QD ensamble
Enhancementorsuppressionof QD spontaneous emission QD in micropillar QD in planarmicrocavity QD in micropillar with coatedsidewalls Bayer et al 2001
Decay rate as a function of detuning T. Jakubczyk et al.
Decay rate as a function of detuning • Strong enhancement of the decay rate at zero-detuning
Decay rate as a function of detuning • Strong enhancement of the decay rate at zero-detuning T. Jakubczyk et al.
Decay rate as a function of detuning • Strong enhancement of the decay rate at zero-detuning • Shortening of the decay time does not depend on temperature • Far detuned QDs have similar decay time to reference QDs T. Jakubczyk et al.
Decay rate as a function of detuning • Strong enhancement of the decay rate at zero-detuning • Shortening of the decay time does not depend on temperature • Far detuned QDs have similar decay time to reference QDs T. Jakubczyk et al.
Deterministic and scalable method for production of coupled QD-cavity devices 2 mm SEM image
QD micropillar QD coupled to the mode of the micropillar microcavity: an ideal case Spatial matching: QD at the spatial maximum of the cavity optical mode Spectral matching: QD emission energy = Optical cavity fundamental mode energy QD Emission M Energy
Towards deterministic coupling - Control of the spatial positions of individual QDs? 100 nm AFM image
Towards deterministic coupling - Control of the spatial positions of individual QDs? - Yes.
Towards deterministic coupling ~ 50 meV PL ~ µeV 1.32 1.40 1.48 Energy (eV) - Control of the energy emission of individual QDs? - No. Bragg mirrors Probability of random spatial and spectral matching of the QD to the cavity mode for 2 m pillar smaller than 1/1000
Quantum nature of a strongly coupled single quantum dot-cavity system K.Hennessy & al., Nature2007 Technology so far QD in photonic crystal cavity – coupled „on demand” (Imamoglu’s group, Science’2005, Nature’2007): • Many steps • Precision of spectral matching 6 meV • Only one coupled device on the sample
Deterministic and scalable method for production of coupled QD-cavity devices • Spectral and spatial QD-cavity matching in a single step • Many coupledsystems on the same sample • One ormoreQDscoupled to the same mode
Experimental setup emission analysis spectral matching spectrometer CCD sample at 10 K laser 750 nm laser 532 nm x z shutter y focus control spatial matching