1 / 46

Quantum Dots in Photonic Structures

Lecture 11: QD- microcavity in strong coupling regime. Quantum Dots in Photonic Structures. Wednesdays , 17.00, SDT. Jan Suffczyński. Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskiego

sasson
Download Presentation

Quantum Dots in Photonic Structures

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lecture 11: QD-microcavity in strongcoupling regime Quantum Dots in PhotonicStructures Wednesdays, 17.00, SDT Jan Suffczyński Projekt Fizyka Plus nr POKL.04.01.02-00-034/11 współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki

  2. Plan for today Extended Reminder 2. QD-CavityMode in the strongcoupling regime – introduction 3. QD-CavityMode in the strongcoupling regime in Photoluminescence and reflectivity

  3. Qualityfactor of a planarcavity The reflectivity of a DBR consisting of m mirror pairs (n0equals 1 for the top mirror and n0 = nGaAs for thebottom mirror) AlAs/GaAs planar microcavity sample with 20/24 mirror pairs in the upper/lower DBR

  4. From 1D to 3D photoniccrystal Planarmicrocavity= 1D confinement of the light Pillarmicrocavity= 3D confinement of the light DBR made of ZnSSe and MgS/ZnCdSesupperlattices Lohmeyer et al.

  5. Photoluminescence - Micropillareigenmodes Experiment Simulation • Extended transfer matrix method: • Material absorption included • Equal emission intensity of each line assumed T. Jakubczyk et al.

  6. Qualityfactor of the micropillar: losssources Top view Photon Escape  Rate „Planar” losses + „Sidewall” losses ~ + + r dr dr: typically ~ 10 nm Scatteringlosses proportional tothe transverse mode intensityat the microresonatoredge:

  7. Sidewallroughness GaAs/AlAsDBRs Roughness of the order of tens of nm

  8. Purcell factor vs diameter • Pillardiameter D decreases - > V decreases, but also Q decreases • Fp ~ Q/V • Nonmonotnicdependence of Fp on the pillardiameter

  9. Q factoroscillations Oscillationsattributed to a coupling of the fundamentalmode to higher-order pillar modes Basic idea: + +

  10. Decaytimemeasurements XC XC XX XX X X M M XX on resonance with mode XX out of resonance with mode T = 40 K T = 10 K Time Photon Energy

  11. Decay rate as a function of detuning • Strong enhancement of the decay rate at zero-detuning

  12. Directing of the emission • Not onlyacceleration of the emissionthanks to the mode Braggmirrors

  13. Directing of the emission • Not onlyacceleration of the emissionthanks to the mode, but alsodirecting of the emission! Couplingcoefficient to the mode b= FP/(FP+1)

  14. Deterministic QD-CavityModematching

  15. Resist development Nickel mask deposition Etching: Lift-off Pillar with a QD placed in the mode maximum Deterministic QD-CavityModematching Signal Photoresist exposured

  16. GaAs/AlGaAs QD AlGaAs (Al rich region) Substrate GaAs Microdiscmicrocavitiesproductiontechhnology Resistdeposition + Negativeelectrolithography

  17. GaAs/AlGaAs QD AlGaAs (Al rich region) Substrate GaAs Microdiscmicrocavitiesproductiontechhnology Resistdeposition + Negativeelectrolithography Non-selective wet etching

  18. GaAs/AlGaAs QD AlGaAs (Al rich region) Substrate GaAs Microdiscmicrocavitiesproductiontechhnology Resistdeposition + Negativeelectrolithography Non-selective wet etching Selectivewet etching Removing of the resist (acetone)

  19. The idea:

  20. The realization: Reitzenstein et al.

  21. The results: • Temperaturetuning of X energy • Q factor of 13.000 • Electricallypumped

  22. The idea:

  23. Purcell effect in an electrically tunable QD-cavity system The realization: Laucht et al., 2009

  24. Purcell effect in an electrically tunable QD-cavity system The results: Purcell effect in an electrically tunable QD-cavity system Laucht et al., 2009

  25. QD- CavityMode in the strongcouplingregime

  26. Light-matterinteraction: Strongcoupling Energy S1 S2 CavityMode Emitter Optical Modes outside the cavity When S1> S2 and Emitter in resonance with the CavityMode: Photonpreserved in the cavity „for long” Reabsorption and reemission of the photon by the mitter

  27. Strongcoupling –Rabisplitting Out of the resonence: |1,0> : Emptycavity Excited emitter

  28. Strongcoupling –Rabisplitting Out of the resonence: |1,0> : Emptycavity Excited emitter |0,1> : Photon insidecavity Emitter in groundstate

  29. In resonance: Energy Rabbi SplittingDR (|0,1>|1,0>)/ (|0,1>+|1,0>)/ Eigenstates : Entengledstatesemitter-photon 2 2 ↔ |0,1> |1,0> Oscillations with Rabifrequency = R / h Strongcoupling –Rabisplitting Out of the resonence: |1,0> : Emptycavity Excited emitter |0,1> : Photon insidecavity Emitter in groundstate

  30. Weak vs strongcoupling Out of the cavity

  31. Weak vs strongcoupling Out of the cavity

  32. Conditions for the strongcoupling regime Decisivefactors: QD ~ 1/τQD Emitterdecayrate: C ~ 1/τC Cavitydecayrate: Couplingconstant QD-Cavitymode:

  33. Conditions for the strongcoupling regime Decisivefactors: QD ~ 1/τQD Emitterdecayrate: C ~ 1/τC Cavitydecayrate: Couplingconstant QD-Cavitymode: g>M/2, QD Condition for the strongcoupling: Rabisplitting On QD-Cavityresonance:

  34. Strongcoupling regime Energylevels versus detuning: QD– Cavitymodedetuning • At resonanceQD- Cavitymode: anticrossingof the levels! Rabisplitting:

  35. Conditions of the strongcoupling Rabisplitting: • Desired: • Large g, thus small V and largeoscillatorstrengthf • Small M, this high Qualityfactor of the Cavity Q Q=

  36. Weakcoupling vs strongcoupling Anticrossing/ no anticrossing Reithmaieret al., Nature (2004)

  37. Weakcoupling vs strongcoupling Exchange of linewidths/ no lw exchange Reithmaieret al., Nature (2004)

  38. Weakcoupling vs strongcoupling Anticrossing/ no anticrossing Exchange of linewidths/ no lw exchange Equalintensityatresonance/ X intensityincreasedatresonance Reithmaieret al., Nature (2004)

  39. QD-Cavitystrongcoupling : beginnings Strong coupling in a single quantum dot–semiconductor microcavity system Vacuum Rabi splitting with asingle quantum dot in aphotoniccrystalnanocavity Exciton-Photon Strong-Coupling Regime for a Single Quantum Dot Embedded in a Microcavity E. Peter et al., Phys. Rev. Lett. (2005) Reithmaieret al., Nature (2004) T. Yoshie et al., Nature (2004)

  40. QD-Cavitystrongcoupling : beginnings V=0.04µm3 V=0.07 µm3 V=0.3 µm3 InAs : f = 10 In0.6Ga0.4As : f = 50 GaAs : f=100

  41. Etat de l’art : Couplage fort pour une boîte quantique unique en cavité V=0.04µm3 V=0.07 µm3 V=0.3 µm3 InAs : f = 10 In0.6Ga0.4As : f = 50 GaAs : f=100

  42. 32layers 36 layers Strongcoupling in micropillars with anelliptic cross-section Qualityfactor vs diameter + improvedetching  Higher Q factor of the micropillars

  43. Strongcoupling in micropillars with anelliptic cross-section 37K X Qa = 22500 DRa = 35 meV Ma 36K Mb Intensity (arb.units) DRb = 32 meV Qb = 15500 35K Temperature (K) Ma Mb  AnticrossingX – Mode, Rabi= 35 eV 34K X 1323.8 1324 1324.2 Energy (meV) • (A. Dousse, JS et al., 2008)

  44. QD-cavitystrongcouplingevidenced in reflectivity Reflectivity with use of finelytunable laser

  45. QD-cavitystrongcouplingevidenced in reflectivity • Very high spectral resolution • Resonantexcitation Loo et al., 2012

  46. ElectricallycontrolledstrongcouplingQD-cavitymode • No need of temperaturetuning • Rabisplitting of 121μeV Laucht et al., 2009

More Related