1 / 33

Co to jest MIARA ?

POMIAR I MIARA GRUPA 97_27_MFG1 kompetencje MATEMATYCZNO-FIZYCZNE opiekun KRYSTYNA CHMIELEWSKA semestr IV rok szkolny 2011/2012 III LICEUM OGÓLNOKSZTAŁCĄCE W OSTROWIE WIELKOPOLSKIM. Co to jest MIARA ?.

sabin
Download Presentation

Co to jest MIARA ?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. POMIAR I MIARAGRUPA 97_27_MFG1kompetencje MATEMATYCZNO-FIZYCZNEopiekun KRYSTYNA CHMIELEWSKAsemestr IV rok szkolny 2011/2012III LICEUM OGÓLNOKSZTAŁCĄCE W OSTROWIE WIELKOPOLSKIM

  2. Co to jest MIARA ? • Miara (wielkości fizycznej lub umownej) – liczbowy wynik pomiaru danej wielkości, wartość wielkości fizycznej lub umownej wyrażona w postaci iloczynu liczby (wartości liczbowej wielkości), określającej stosunek wartości wielkości do jednostki miary (czyli wskazującej, ile razy wartość ta jest większa lub mniejsza od jednostki miary) i jednostki miary tej wielkości

  3. Co to jest POMIAR ? • Pomiar – według współczesnej fizyki proces oddziaływania przyrządu pomiarowego z badanym obiektem, zachodzący w czasie i przestrzeni, którego wynikiem jest uzyskanie informacji o własnościach obiektu. • Pomiar jest to zespół czynności wykonywanych w celu ustalenia miary określonej wielkości fizycznej lub umownej, jako iloczynu jednostki miary oraz liczby określającej wartość liczbową tej wielkości, inaczej mówiąc porównywanie wartości danej wielkości z jednostką miary tej wielkości.

  4. SPIS TREŚCI Układ jednostek SI Miara Jordana Ogólne pojęcia miary zbioru Eksperyment – pomiar prędkości światła Doświadczenie – pomiar wysokości wieży kościelnej Doświadczenie – pomiar wysokości wieży kościelnej Doświadczenie – pomiar obszaru boiska wielofunkcyjnego

  5. Co to jest układ Si ? • Układ SI (franc. Système International d'Unités) – Międzynarodowy Układ Jednostek Miar zatwierdzony w 1960 (później modyfikowany) przez Generalną Konferencję Miar. Jest stworzony w oparciu o metryczny system miar. Jednostki w układzie SI dzielą się na podstawowe i pochodne. • W Polsce układ SI obowiązuje od 1966, obecnie został oficjalnie przyjęty przez wszystkie kraje świata z wyjątkiem Stanów Zjednoczonych, Liberii i Birmy.

  6. Wzorzec kilograma

  7. Historia • Układ SI powstał ze starego układu MKS, do którego należał metr, kilogram i sekunda. W 1954 roku dołączono jako podstawowe jednostki amper, kelwina oraz kandelę, natomiast sam Międzynarodowy Układ Jednostek Miar został zatwierdzony na XI Generalnej Konferencji Miar w 1960 roku. Po obradach XIV Generalnej Konferencji Miar w 1971 r. do klasy jednostek podstawowych został włączony mol określający liczność materii. Natomiast na XX, w październiku 1995 roku do klasy jednostek pochodnych włączono jednostki występujące dotychczas jako jednostki uzupełniające - radian i steradian.

  8. Jednostki podstawowe

  9. Jednostki pochodne Jednostkami pochodnymi nazywamy wszystkie pozostałe jednostki wielkości fizycznych, zarówno te posiadające własne nazwy jak np. wat (W) czy dioptria (δ), jak i te, które ich nie posiadają i są wyrażane za pomocą jednostek podstawowych, np. przyspieszenie nie posiada swojej nazwy jednostki i wyrażane jest za pomocą metra i sekundy -

  10. Jednostki pochodne

  11. Miara Jordana • Niech D będzie obszarem lub dowolnym zbiorem płaskim ograniczonym (np. sumą obszarów, krzywych i punktów). Zamknijmy go w pewien kwadrat Q, podzielmy Q na skończoną ilość prostokątów domkniętych p1, p2, …, pn i oznaczamy 10 przez Sn sumę pól tych prostokątów, które zawierają (zewnątrz lub na brzegu) jakiś punkt zbioru D; 20 przez sn sumę pól tych prostokątów pk , których każdy punkt należy do zbioru D (jeżeli takich p nie ma, przyjmujemy Sn=0). • Zbiór wszystkich sum Sn odpowiadającym różnym podziałom kwadratu Q na n prostokątów i różnym n- 1,2,… ma pewien kres dolny Sn , który nazywamy miarą zewnętrzną zbioru D. Podobnie zbiór sum sn ma pewien kres górny sn , który nazywamy miarą wewnętrzną zbioru D, oczywiście sD < SD .

  12. Jeżeli sd= SD , to zbiór D nazywamy mierzalnym powierzchniowo w sensie Jordana, a wspólną wartość obu miar nazywamy miarą płaską Jordana(lub polem) zbioru D. • Dowodzi się, że tak określone ,,pole” nie zależy od wielkości ani od położenia kwadratu Q i że dla figur takich, jak trójkąt, wielobok, koło ,,pole” to zlew się z polem znanym w geometrii elementarnej. Istnieją jednak zbiory, a nawet obszary niemierzalne, tj. takie, dla których sD< SD. Zbiór (reprezentowany na rysunku przez obszar wewnątrz niebieskiej krzywej) jest mierzalny w sensie Jordana wtedy i tylko wtedy, jeśli może być dobrze przybliżony tak od wewnątrz jak i od zewnątrz przez sumy prostokątów (ich brzegi oznaczone są odpowiednio ciemną zielenią i ciemnym różem).

  13. Ogólne pojęcia miary zbioru: • Miara zbioru (figury) – funkcja, która niektórym zbiorom (figurą) przyporządkowuje nieujemne liczby rzeczywiste. W przypadku figur znajdujących się na prostej miarą tą jest długość, na płaszczyźnie- pole, w przestrzeni trójwymiarowej- objętość. Najczęściej spotykanymi miarami są miara Jordana i Lebesgue’a .

  14. Metryka: • Metryka (In. odległość)- funkcja d określona na iloczynie kartezjańskim gdzie X jest niepustym zbiorem, przyjmująca wartości rzeczywiste nieujemne.

  15. Aby istniała metryka muszą być spełnione następujące warunki: • d(x,y)=0 wtedy i tylko wtedy gdy x=y ; oznacza to, ze odległość miedzy dwoma punktami wynosi 0 wtedy i tylko wtedy, gdy punkty te pokrywają się. • D(x,y)= d(y,x) dla dowolnych x, y należących do zbioru X ; tzn. że odległość między dwoma punktami, nie zależnie czy mierzona od punktu x do punktu y, czy też od punktu y do punktu x jest zawsze taka sama • D(x,y) + d(y,z) ≥ d(x,z) dla dowolnych x,y,z należących do zbioru X. Jest to tzw. Nierówność trójkąta i oznacza ona, że odległość między dwoma punktami x,z mierzona pośrednio przez y jest większa bądź równa odległości między tymi punktami mierzonej bezpośrednio od x do z. Liczbę d(x,y) nazywamy odległością liczb x i y

  16. Przykłady metryk: • metryka na prostej rzeczywistej jest określona • wzorem d(x,y)= |x-y| • oznacza on zwykłą odległość przestrzeni euklidesowej jednowymiarowej; na płaszczyźnie odległość między dwoma punktami o współrzędnych: x=(x1,x2) i y=(y1+y2) dana jest wzorem d(x,y). Ciekawym przykładem jest tzw. Metryka rzeka. Charakteryzuje sytuacje w pewnym kraju zarośniętym gęsto lasami, przez który przepływa rzeka y=0 . Mieszkańcy tego kraju aby móc zaopatrywać się w wodę, wytyczyli ścieżki prowadzące od ich domu prostopadłe do rzeki. Aby dostać się tam z miejsca do miejsca , trzeba iść do rzeki, popłynąć rzeką tak daleko żeby znaleźć się w punkcie rzeki najbliższym punktu ( i znowu przejść ścieżką przez las. • Odległość tę można zobrazować jaką najkrótszą drogę, którą przebędzie taksówkarz wiozący pasażera z miejsca z1 do miejsca z2 w mieście, w którym wszystkie ulice przecinają się pod kątem prostym. Przejedzie on najpierw ulicą x1 aż do skrzyżowania z ulicą y1 dojeżdżając do miejsca z2 .

  17. Pomiar prędkości światła W CELU ODTWORZENIA FILMU, KLIKNIJ W CZARNY PROSTOKĄT

  18. Wysokość wieży Kościelnej Wieża o wysokości H daje cień 21,5 m, podobnie osoba o wysokości 185 cm daje cień 148 cm.

  19. Obliczamy wysokość wieży korzystając z twierdzenia Talesa.

  20. W ten sposób, otrzymaliśmy przybliżoną wartość wysokości wieży kościelnej równą 26,9 m.

  21. Pomiary stawu w parku miejskim

  22. Powierzchnia parku stanowi 60292 m2, w tym trawników 17010 m2, a 6256 m2 to powierzchnia stawu parkowego. Park ograniczony jest ulicami: od strony południowej – ul. Ks. Jana Kompały, od wschodu – ul. Piłsudskiego, od północy – ul. Ledóchowskiego, od zachodu – Aleja Powstańców Wielkopolskich, gdzie naprzeciwko parku znajduje się Urząd Miasta.

  23. Pomiary długości i szerokości stawu • Zadanie: • mierzymy długość i szerokość stawu za pomocą kroków (1 krok= 1m), • porównujemy pomiary z dokładnymi danymi uzyskanymi z mapy (w skali) • obliczamy błąd przybliżenia

  24. Pomiary w terenie: a= 117m b= 78 • Dane z mapy: a’= 123m b’= 80m • Błąd względna: A=|a’-a|*100% /a’ B=|b’-b|*100% /b’ A=|123-117|*100% /123= 4,88% B=|80-74|*100% /80= 7,5%

  25. Obszar boiska szkolnego • Boisko szkolne – wielofunkcyjne składa się z obszaru przeznaczonego do użytku sportowego ( wymiary tego elementu będziemy się starali uzyskać ) oraz otaczającej go „ścieżki” z kostki brukowej. • Do przeprowadzenia pomiaru wykorzystamy jedynie miarę o długości 5 m oraz kartkę i długopis do podstawowych obliczeń.

  26. Układ Boiska Obszar Właściwy Kostka Brukowa

  27. Podczas mierzenia miarą uzyskaliśmy dane mówiące, iż wielkość całego obszaru to • 33m x 48,5m. Udało nam się również zmierzyć, iż szerokość „ścieżki” to 1 m. • Dzięki temu po odjęciu szerokości ścieżki od każdego z boków uzyskaliśmy wynik – • 31m x 45,5m!

  28. WNIOSKI: 1. Pojęcia pomiar i miara mają podstawowe znaczenie w matematyce i fizyce, ich podstawach teoretycznych i zastosowaniach praktycznych. 2. Pomiary można wykonywać w sposób bardzo prosty lub przy użyciu różnych urządzeń, zawsze należy uwzględnić błędy pomiaru. 3. Pojęcie miary w matematyce ma różne zastosowania, np. w geometrii i rachunku prawdopodobieństwa.

  29. BIBLIOGRAFIA • W.Babiański, L.Chańko,D.Ponczek, Matematyka1, wyd. VIII,2002. • Franciszek Leja, Rachunek różniczkowy i całkowy ze wstępem do równań różniczkowych, Warszawa, 1975 • http://pl.wikipedia.org/wiki/Uk%C5%82ad_SI • http://tvpw.pl/videos/175/Jak_zmierzyc_predkosc_swiatla_w_mikrofalowce

More Related