1 / 44

Spectrum of the excited Nucleon and Delta baryons in a relativistic chiral quark model

Spectrum of the excited Nucleon and Delta baryons in a relativistic chiral quark model E.M. Tursunov , INP, Tashkent with S. Krewald , FZ, Juelich J. Phys. G:Nucl. Part. Phys., 31 (2005) 617-629. J. Phys. G:Nucl. Part. Phys., 36 (2009) 095006.

sabina
Download Presentation

Spectrum of the excited Nucleon and Delta baryons in a relativistic chiral quark model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Spectrum of the excited Nucleon and Delta baryons in a relativistic chiral quark model • E.M.Tursunov, INP, Tashkent • with S. Krewald, FZ, Juelich • J. Phys. G:Nucl. Part. Phys., 31 (2005) 617-629. • J. Phys. G:Nucl. Part. Phys., 36 (2009) 095006. • J. Phys. G: Nuc. Part . Phys., 37(2010) 105013 • arXiv (hep-ph): 1103.3661 (2011) • arXiv (hep-ph): 1204.0412 (2012)

  2. Outline • Motivation • Chiral quark potential model (ChQPM) • Selection rules for quantum numbers: connection • with the strong decay of excited baryons • with orbital structure (1S)2(nlj) • Center of mass correction for the zero-order • energy values of the N and Delta states • Numerical estimation of the ground and excited • Nucleon and Delta mass spectrum within ChQPM • Conclusions

  3. Motivation CiralQuark Models have been extensively used to study the structure of the ground state N(939) S. Theberge, A.W. Thomas and G.A. Miller, Phys. Rev. D22, 2838 (1980); A.W. Thomas, S. Theberge and G.A. Miller, Phys. Rev. D24, 216 (1981). K. Saito, Prog. Theor. Phys. V71, 775 (1984). • E. Oset, R. Tegen, W. Weise Nucl. Phys. A426, 456 (1984) • Th. Gutsche & D. Robson . Phys.Lett. B229, 333 (1989) A.W. Thomas, Prog.Part.Nucl.Phys. 61, 219 (2008); F. Myhrer and A.W. Thomas, Phys.Lett. B663, 302 (2008).

  4. Excited baryon spectroscopy: problems within Constituent Quark Models • relativistic effects v ≈ c; • the “missing resonances” problem • a number of fitting parameters (5-10) • what is the most important exchange mechanism between quarks: • one gluon exchange ? (Isgur & Karl, Phys. Let. B72, 109 (1977); Phys. Rev. D21, 779(1980) • π, K, η exchange?(Glozman & Riska. Phys. Rep. 268 (1996) 263) OR • g (mq=330-350 MeV) • π, K, η N* (∆*) N* (∆*)

  5. Spectrum of N* in the CQM (2000 г.)(PPNP, 45, 241)

  6. Spectrum of ∆* in the CQM (2000 )(PPNP, 45, 241)

  7. Chiral quark potential model • Effective chiralLagrangian • (based on the linearizedσ-model) • E. Oset, R. Tegen, W. Weise Nucl. Phys. A426, 456 (1984) • Th. Gutsche & D. Robson • Phys.Lett. B229, 333 (1989) N* (∆*)

  8. The confinement and Coulomb potentials The Dirac equation (variational method on a harmonic oscillator basis)

  9. Field operators for the quark

  10. Field operators for the pion

  11. Propagators (Green functions)

  12. Estimation of the energy spectrum At zeroth order: Higher orders (Gell-Mann & Low ):

  13. Contribution of the self-energy diagramms (π)

  14. 2-nd order Feynman diagrams of the self energy term due-to pion field

  15. Final expression for the contribution of the 2-nd order self-energy diagrams due-to pion fields

  16. Contribution of the 2-nd order self-energy diagrams due-to gluon fields

  17. 2-nd order self-energy Feynman diagrams due-to gluon fields

  18. Final expression for the contribution of the 2-nd order self-energy diagrams due-to gluon to the energy spectrum of baryons

  19. Wave functions of the SU(2) baryons Contribution of the exchange diagrams (pion)

  20. Feynman pionexchange diagrams

  21. Pionexchange operators π () () • ℓβ • ℓβ± • ℓα • ℓα±

  22. One-gluon exchange operators

  23. Feynman gluon-exchange diagrams

  24. Selection rules for quantum numbers: connection with the strong decay of an excited baryons N* (J,T) and ∆*(J,T) -the orbital configuration of the SU(2) baryon 1S π • ℓ • ℓ± ( ) • 0 • 1 () π (nlj) N* (∆*) (J,T) Chiral constraints: π Ng.s.(1/2+)

  25. Consequences of chiral constraints For the fixed orbital configuration (band) the number of N* and ∆* states decreases by 1 • (lj)=P1/2 : l=1; Lπ=l’=0 • S0=0 ; J=1/2 (N*) • S0=1 ; J=1/2 (N*, ∆*) • 2 (N*) + 1 (∆*) • (lj)=P3/2 : l=1; Lπ = l’=2 • S0=0: J=3/2 (N*) • S0=1: J=3/2, 5/2 (N*, ∆*) • 3 (N*) + 2 (∆*) • (lj) ≠ P1/2 : • 3 (N*) + 2 (∆*)

  26. Center of mass correction for the zero-order energy values of the g.s. N and Delta (Moshinsky transformation) K. Shimizu, et al. Phys. Rev. C60, 035203(1999) [R=0 method] D. Lu, et al. Phys. Rev. C57, 2628 (1998) [P=0] R. Tegen, et al., Z. Phys. A307 (1982), 339 [LHO] L. Wilets “Non topological solitons”, World Scientific, Singapoure).1989 R=0: P=0: LHO: Normalization:

  27. Center of mass correction for the zero-order energy values of the excited N* and Delta* states Fixed orbital configuration: (degenerate at zero order) With spin coupling:

  28. Scalar-vector oscillator potential (exact separation in Jacobi coordinates) If S0=0

  29. Simple solution of the two-body bound state Dirac equation

  30. Test: Positronium1S0 (singlet) (bound state of e+e-) • V(r)= α/r +2 βr me • E(1S0 ) SchrÖdinger: 6.803 eV Dirac: 6.806 eV • E(21S0 - 11S0 ) SchrÖdinger: 5.10 eV Dirac: 4.99 eV

  31. Linear scalar and vector Coulomb potentials (in Jacobi coordinates) Expansion over multipols: ( for ρ/3 < r/2)

  32. First approximation (freediquark+ quark)

  33. Numerical estimation of the ground and excited Nucleon and Delta mass spectrum within ChQPM(condition of the calculations) М.T.Kawanai & S. Sasaki, PPNP, 67(2012)130 МэВ Th. Gutsche, Ph.D. thesis. 1987 M. Luescher, Nucl. Phys. B130 (1981) 317 αS=0.65

  34. Self energy of the valence quark due-to pion fields as a function of the intermediate quark(antiquark) total momentum (convergence)

  35. Self energy of the valence quark states due-to color-magnetic gluon fields (convergence)

  36. Ground state nucleon N(939)energy values in MeV CM correction : K. Shimizu, et al. Phys. Rev. C60, 035203(1999) [100] D. Lu, et al. Phys. Rev. C57, 2628 (1998) [101] R. Tegen, et al., Z. Phys. A307 (1982), 339 [102] L. Wilets “Non topological solitons”, World Scientific, Singapoure).1989

  37. Test of the CM correction for the g.s. N and Delta First approximation (free scalar diquark+ quark) EQ=632 (di-q)+419(q)=1051MeV Modification (fit to g.s. N): EQ=394+546=940 MeV

  38. Spectrum of N* (our estimation) Not presented in PDG2012 Exp. Data from: E. Klempt & J.M. Richard, Rev.Mod. Phys. 82 (2010) 1095

  39. Spectrum of ∆*in our model Exp. Data from: E. Klempt & J.M. Richard, Rev.Mod. Phys. 82 (2010) 1095

  40. Conclusions • For fixed orbital band • of the SU(2) baryon states • a)Chiral constraints (selection rules) • b) Connection with the strong decay 2. A way to decrease the number of baryon resonances. Possible way to the solution of the “missing resonances” problem (!?) • 3. a) Simple solution of the 2-body bound-state Dirac equation • b) New method for the CM correction for E Q (N*; Δ*) • 4. Without fitting parameters the spectrum of N* and ∆* are described at the CQM level !

  41. THANKS !!!

More Related