1 / 35

GEO 4860 Advanced petrology

GEO 4860 Advanced petrology. Part 1 : Thermodynamics and phase diagrams, mostly igneous petrology January 24 – March 16 Evaluation: Written exercises (20%) and mid-term exam (30%) Reidar Trønnes , Natural History Museum, UiO r.g.trønnes@nhm.uio.no

Download Presentation

GEO 4860 Advanced petrology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GEO 4860 Advancedpetrology Part 1: Thermodynamics and phase diagrams, mostly igneous petrology January 24 – March 16 Evaluation: Written exercises (20%) and mid-term exam (30%) ReidarTrønnes, Natural History Museum, UiO r.g.trønnes@nhm.uio.no www. nhm.uio.no/om-museet/seksjonene/forskning-samlinger/ansatte/rtronnes/index-eng.xml Part 2: Mostly metamorphic petrology, petrological and structural field relations, training in petrological research March 20 – June 14 Evaluation: Project report (20%) and final exam (30%) HåkonAustrheim, Dept. of Geosciences / Centre for Physics of Geological Processes, UiO h.o.austrheim@geo.uio.no www.mn.uio.no/geo/english/people/aca/tpg/hakonau/index.html

  2. Lectures and tutorials Tuesday and Friday 10-12 and 13-14 in GEO 114 (Skolestua) Examinations Mid-term exam: Friday, March 16, 10.15-13.15 Final exam: Wednesday, June 14, 14.30 – 17.30 Textbook Winter (2010): PrinciplesofIgneous and MetamorphicPetrology. 2. ed. Prentice Hall / Pearson. ppt-presentasjoner for hvert av kapitlene på: www.whitman.edu/geology/winter/.

  3. List ofparticipants: 12 Advantage for student – instructorcommunication Presentationof student status, M.Sc. thesisproject, supervisor, etc. Completedcourses(or courses in progress) Opticalmineralogy and petrography ? Isotope geochemistry ? Structuralgeology ?

  4. Mineral- and rock compositions Weight% versus atom% (or mol%) Verybasic features - Silicate minerals and commonrocks arenearly "fullyoxidized", withO as themost importantand oftentheonlyanion BUT: Fe occurs as a combination ofFe2+(as FeO) and Fe3+(as Fe2O3/ FeO1.5) - Oxide-, carbonate-, phosphate-, sulphate- and tungstate-mineralsarealso "fullyoxidized" - The contentsofhalogenides and sulphidesareverylow in commonsilicate rocks Chemical analyses of minerals and rocks arenormallypresented as oxides BUT: useful to recalculate to cation basis,especially for minerals (i.e. relatively simple stoichiometric compounds)

  5. Basic information: Valency/ oxidationstatefor major and trace elements - Thegreatmajorityof major and trace elements has onedominatingvalency in silicate minerals and rocksin planetary mantles and crusts. - Importantexception: Fe Importantquestion Choiceofstoichiometry / formulafor theoxides SiO2 Al2O3or AlO1.5 FeO Fe2O3or FeO1.5 CaO Na2Oor NaO0.5 K2Oor KO0.5

  6. Is 19 wt% Al2O3identical to 19 wt% AlO1.5 ? Yes! evenifAl2O3 has 2 cations+ 3 anions, whereas AlO1.5has 1 cation+ 1.5 O-ions Calculationof mineral formulasbasedonwt%: I prefer to useone-cation-oxides

  7. Calculationof mineral formula (structuralformula) for afeldsparanalysis Generell feltspat-formel: (K,Na,Ca)(Al,Si)4O8, i.e. 5 cations+ 8 O-ions Mineral formula, normalized to 8 O-ions = op*8/(O*29769) Si 2.947 Al 1.025 Fe3+ 0.035 Ca 0.029 Na 0.618 K 0.354 Scations5.008 Scharge16.00 Mineral formula, normalized to 5 cations = cp*5/18635 Si 2.943 Al 1.024 Fe3+ 0.035 Ca 0.029 Na 0.616 K 0.353 Scations5.000 Scharge15.97 oxygen-prop. op = 104*O*wt%/mw 21936 5723 194 109 1149 658 S 29769 mol. wt mw 60.08 50.98 79.84 56.08 30.99 47.10 cationprop. cp = 104*wt%/mw 10968 3815 129 109 2298 1316 S 18635 wt% 65.90 19.45 1.03 0.61 7.12 6.20 SiO2 AlO1.5 FeO1.5 CaO NaO0.5 KO0.5 4.007 4.002 1.001 0.998 Mineral formulanormalized to 5 cations: K0.35Na0.62Ca0.03(Fe0.04Al1.02Si2.94) O7.99 Mineral formulanormalized to 8 O-ions: K0.35Na0.62Ca0.03(Fe0.04Al1.03Si2.95) O8.00

  8. Graphicpresentationof mineral compositions Along a simple axis, systemO-Fe: 3 phases(minerals): FeO (wüstite), Fe2O3 (hematite) and FeOˑFe2O3 (Fe3O4, magnetitt) Mol% FeO: 1Fe + 1O = 2, 1/2 = 50% Fe Fe2O3: 2Fe + 3O = 5, 2/5 = 40% Fe Fe3O4: 3Fe + 4O = 7, 3/7 = 43% Fe Weight% FeO: 55.85 Fe + 16.00 O = 71.85, 78% Fe Fe2O3: 2ˑ55.85 Fe + 3ˑ16.00 O = 159.70, 70% Fe Fe3O4: 3ˑ55.85 Fe + 4ˑ16.00 O = 231.55, 72% Fe

  9. Graphicpresentationof mineral compositions In triangular diagram, system MgO-SiO2-Al2O3. Mineral endmembers (components) forsterite(Mg2SiO4), enstatite(MgSiO3), silica(SiO2), spinel(MgAl2O4) og pyrope(Mg3Al2Si3O12) Mol% Mg2SiO4: 2MgO + 1SiO2, 1/3 = 33.3% SiO2 MgSiO3: 1MgO + 1SiO2 = 2, 1/2 = 50.0% SiO2 SiO2: 100% SiO2 MgAl2O4: 1MgO + 1Al2O3 = 2, 1/2 = 50.0% Al2O3 Mg3Al2Si3O12: 3MgO + 1Al2O3 + 3SiO2 = 7, 3/7 = 42.9 % MgO 3/7 = 42.9% SiO2 1/7 = 14.3% Al2O3 Weight% Mg2SiO4: 2ˑ40.3044 + 60.0843 = 140.6931, 42.7% SiO2 MgSiO3: 40.3044 + 60.0843 = 100.3887, 59.9% SiO2 SiO2: 100% SiO2 MgAl2O4: 40.3044 + 101.9612 = 142.2656, 71.7% Al2O3 Mg3Al2Si3O12: 3ˑ40.3044 + 101.9612 + 3ˑ60.0843 = 403.1273, 30.0% MgO 44.7% SiO2 25.3% Al2O3 Al2O3 Sp Sp Py Py Fo MgO Fo En SiO2 En

  10. Definitionofthe terms phase, systemand components Phase: chemicallyhomogenoussubstance Examples: water, ice, steam, kyanite, sillimanite, quarts, granitic melt System: a collectionofphases under consideration Wedecidetheboundariesofour system. Try to findthe most convenient system in order to describe and understand thechemical and thermodynamicequilibria. Examples: - hand specimentof a basalt - a 10 m long by 2 m tall roadcutexposing lenses ofeclogite in gneis - an experimentalsamplecapsulewith 50 mol% MgSiO3 + 50 mol% Mg3Al2Si3O12 - theentireEarth’s mantle + core System components: chemicalentitiesnecessaryfor thecharacterization of a system(e.g. elements, oxides or more complexformulaunits) Phasecomponents: chemicalentitiesnecessary for thecharacterization of a phase(e.g. elements, oxides or more complexformulaunits)

  11. Considerationsw.r.t. choiceofcomponents Al-silicate system containingthephaseskyanite, sillimanite, andalusite. Polymorphswithchemicalcomposition: Al2SiO5 3 elements: Al, Si, O 2 ooxides: Al2O3, SiO2 Howmanycomponents? 1: Al2SiO5

  12. The ”olivine system” of solid solutionbetween forsteritt (Mg2SiO4) og fayalitt (Fe2SiO4) 4 elements: Mg, Fe, Si, O 3 oxides: MgO, FeO, SiO2 Howmanycomponents? 2: Mg2SiO4and Fe2SiO4 Howmanyphases? 1: olivine

  13. The phaserule For a system in equilibrium: P + F = C + m F:Numberofdegreesoffreedom (variance): numberof variables thatcanchange independentlyofeachother (e.g. p-T-X, pressure-temperature-composition) C:The smallest numberofchemicalcomponentsrequired to characterize all ofthephases P:Numberofphases present in equilibrium at any given location m:Numberofexternal variables thatinfluencethe system, commonly m=2 (p and T)

  14. Phaserule: P + F = C + 2 System: Al2SiO5 C = 1 (componentAl2SiO5is common to all 3 phases) P = 3  3 + F = 1 + 2 F = 0 (invariant point) P = 2  2 + F = 3 F = 1 (univariantline) P = 1  1 + F = 3 F = 2 (divariantfield)

  15. Olivinegroup thevery first melt olivine Liquidus Solidus Forsterite:veryhighmeltingpoint System forsterite-fayalite:full solid solution and liquidsolution Bulk composition

  16. System: (Mg,Fe)2SiO5or Mg2SiO4 – Fe2SiO4 C = 2 bothofthephasescomprisedifferent proportionsofthecomponents forsterite and fayalite This is a T-X-diagram at constant (fixed) pressure(1 bar)  Phaserule: P + F = C + 1 P + F = 2 + 1 = 3 F = 3 – P • P = 1  F = 2 • divariantfields, canvaryboth T and X • i.e. for a fixedT (e.g. 1200 C) can • olivinevary from Fo100to Fo0 P = 2  F = 1 - univariantcurves. IfT is fixed, the compositionsofthetwophasesarealsofixed - changing T  changingXsol and Xmelt Three phasesare never present in this diagram. Therefore, therearenobinary invariant points. BUTthemeltingpoints for pure forsterite and pure fayaliteareunary invariant points (in thetwo one-component systems Fo and Fa.

  17. The lever rule: Measuringthemassproportionoftwophases Bulk compositionFo20 Equilibrium at 1660 C 99.99% olivine(Fo20) + 0.01% melt (Fo51)

  18. Vektstang-regelen: Måling av mengdeforholdet mellom to faser Bulk compositionFo20 Equilibrium at 1700 C olivine(Fo84) + melt (Fo56) 7 41 100*41/48 = 85.4% 100*7/48 = 14.6%

  19. Vektstang-regelen: Måling av mengdeforholdet mellom to faser Bulk compositionFo20 Equilibrium at 1800 C olivine(Fo93) + melt (Fo77) 5 22 100*5/27 = 18.5% 100*22/27 = 81.5%

  20. Teaching Phase Equilibria http://serc.carleton.edu/research_education/equilibria/index.html

  21. One-component system Two-component system Eutecticpoint, 23% NaCl

  22. Simple experimenti freezer(s) withadjustableT Make a salt solution with2-3% NaCl Putplastic bags withthesolution in thefreezer(s) at twodifferent T(–2 and –18 ºC) –2ºC • - takeoutthenextday • pickoutthe pieces ofice • rinse in clean water • taste theice • taste thesolutions • estimatethemassproportion • solid/liquid –18ºC Whatwillyouobserve: –2ºC ? –18 ºC ?

  23. Phaserelations: basalt – peridotite, binary systems

  24. Meltingrelations for natural rocks – Multicomponent systems Not a simple binarysystem: A ternarysystem is muchbetter, but still only a simplifiedmodel Eutektic point basalt peridotite

  25. Secondlawofthermodynamics: Changeofinternalenergy (heat content) and entropy dQ = TdS(for a reversibel process) Thirdlaw: Scrystal = 0 at T = 0 K First law: (internalenergyof an isolatedsystem is constant) dE = dQ – dW = TdS – pdV Work: W = pV W = Fs (Nm = J) p = F/s2 (N/m2 = Pa) W = ps3 = pV (m3N/m2 = Nm) Our system: e.g. a crystal Contribution1: addedenergy(dE1) mayincreasetheinternalenergy (by heating, dQ) dQgoesintothe system -thereforepositive dE1 dE1 = dQ = TdS heating Contribution2: addedenergy(dE2) enablethe system to performworkon thesurroundings( = volumeincreaseagainstconstantpressure) dWgoesoutofthesystem -thereforenegative dE2 dE2= -dW = -pdV volumeincrease

  26. First law: The internalenergy in an isolatedsystem is constant dE = dQ – dW = TdS – pdV Gibbsfreeenergy:energyin addition totheinternalenergy Definition: G = E – (TS – pV) = E + pV – TS = H – TS At chemicalequilibrium: DG = Gprod – Greact = 0

  27. Gibbsfreeenergy:energyin addition totheinternalenergy Definition: G = E – (TS – pV) = E + pV – TS = H – TS At chemicalequilibrium: DG = Gprod – Greact = 0 Lowestenergylevel: greateststability Simple meltingreaction: SiO2 = SiO2 solid melt (e.g. tridymite)

  28. The aluminium silicates: Al2SiO5 Sillimanite: Al[6]Al[4]Si O5 Orthorombic Kyanite: Al[6]Al[6]Si O5 Triclinic c c p Al[6] T Al[4] c Andalusite: Al[6]Al[5]Si O5 Orthorombic Al[5]

  29. ReactionAl2SiO5 = Al2SiO5 andalusitekyanite p DV = Vky – Vand positive? or negative? < 0 kyanite DS = Sky – Sand < 0 dp p1+dp, T1+dT p1 Considertwopointsonthephaseboundary (equilibriumbetweenkyanite and andalusite) DG = 0 p1,T1 andalusite DG = DE + p1DV – T1DS = 0 DG = DE + (p1+dp)DV – (T1+dT)DS = 0 dT T1 T Subtractionofupperequation from thelowerone: dpDV = dTDS dp/dT = DS/DV Clayperon-equation negative DV andDS givespositivedp/dT-slope

  30. Aluminium silicates: Al2SiO5 Kyanite: Al[6] Al[6] Si O5 Triclinic, D: 3600 kg/m3 Sillimanite: Al[6] Al[4] Si O5 Orthorombic, 3250 kg/m3 Andalusite: Al[6] Al[5] Si O5 Orthorombic, 3180 kg/m3 p Al2SiO5 = Al2SiO5 andalusitesillimannite DV = Vsill – Vand DS = Ssill – Sand positive? or negative? T < 0 > 0 dp/dT = DS/DV positive? or negative?

  31. General features regardingmelting and crystallisation What is melting? Solid/orderedcrystallatticebreaksdown (”dissolves”) What is required? (Reaction: crystal → melt) - heating to Tm - heat offusion, DHm= DE + pDV> 0 WhataboutDV? Mostly: DV > 0 possibleexception at veryhighp Highp → DV may be negative,butDEis alwayspositive Equilibrium: DGsm = DH ̶̶ TDS = 0, d.v.s. DS > 0 alwayspositive DSm Gibbsfreeenergy:energyin addition to theinternalenergy Definition: G = E – (TS – pV) = E + pV– TS = H – TS At equilibrium: DG = Gprod – Greact = 0 First law (Internalenergy in isolated system is constant) dE= dQ – dW = TdS – pdV

  32. Basic question(try to reasononlyintuitively): AssumingthatDVm>0, howdoes Tmchangewithincreasingp? Why? Tmincreaseswithincreasing p becausethevolumeincrease due to melting (DVm> 0) becomes more unfavourable as p increases. Increasing Tm is required to compensate for theunfavourablep-V-effect.

  33. Clapeyron-equationfor melting p Forsterite ReactionMg2SiO4 = Mg2SiO4 forsteritemelt Melt DV = Vsm – Vfast > 0 DS > 0 dp p1 dT DG = DE + p1DV – T1DS = 0 DG = DE + (p1+dp)DV – (T1+dT)DS = 0 T T1 dpDV = dTDS dp/dT = DS/DV T Melt positive DV andDS: positivedp/dT-slope Forsterite p

  34. Correctmeltingcurvebasedon more recentexperiments (Kanzaki1990; Zhang et al 1993) Older and somewhatwrongphase diagram for SiO2 from Perkins (2011, Mineralogy) Extremelyhigh T, difficultexperiments p-Tmeltingcurvesarenot linear, buthave mostly increasingdp/dTwithincreasing p and T. Why? Howcanweanswerthisquestion?

  35. ConsidertheClapeyron-slopeofthemeltingcurve: dp/dT = DSm/DVm Meltingreaction: SiO2(solid) =SiO2(melt) DSm= Smelt-Ssolid DVm= Vmelt-Vsolid Remember: DSm is alwayspostitive- for simplicitywecan assumethatit is nearlyconstant WhataboutDVm? Whatis most compressible: mineral or melt ? DVm→0 in thehighest p-range ofb-quartz and coesite dp/dT = DSm/DVm→ ∞

More Related