380 likes | 461 Views
Introduction to Nanomechanics (Fall 201 9 ). 1 8 .09.201 9. Prof. Martino Poggio University of Basel poggiolab.unibas.ch. Preliminary Logistics and Introduction. Course outline Expectations What is nanomechanics ? Why study nanomechanics ?. People. Course Leader/Lectures:
E N D
Introduction to Nanomechanics(Fall 2019) 18.09.2019 Prof. Martino Poggio University of Basel poggiolab.unibas.ch
Preliminary Logistics and Introduction • Course outline • Expectations • What is nanomechanics? • Why study nanomechanics?
People • Course Leader/Lectures: • Prof. Martino Poggio • Teaching Assistants/Exercises: • Dr. EstefaniMarchiori • Lorenzo Ceccarelli • Giulio Romagnoli
Format and Requirements • Language: English • Prerequisites: Physics III; course-work in solid- state physics and statistical mechanics • Lectures: 10-12 on Wed. (18.09-18.12.2019), Seminar room NHS 1 • Exercise Sessions: TBA • Assignments: exercises, reading • Final Exam: oral • Grading: 1.0-6.0 based on exam and participation
Books • Foundations of Nanomechanics, A. N. Cleland (Springer, 2003) • Fundamentals of Nanomechanical Resonators, S. Schmid, L. G. Villanueva, M. L. Roukes (Springer, 2016) • Fundamentals of Statistical and Thermal Physics, F. Reif (McGraw-Hill, 1965) • Original papers from Nature, Science, Physical Review Letters, Applied Physics Letters, Review of Scientific Instruments, Physics Today, etc.
Website • https://poggiolab.unibas.ch/courses/introduction-to-nanomechanics-fall-2018/ • Overview • Format and Requirements • Schedule • Lecture content • Reading • Downloads
Exercise Sessions • 1. Mon, 13:00-14:00, 23.09-16.12.2019, 4.1 • 2. Mon, 14:00-15:00, 23.09-16.12.2019, 4.1 • 3.Tue, 14:00-15:00, 24.09-17.12.2019, 3.12 • 4.Tue, 15:00-16:00, 24.09-17.12.2019, 1.22 • 5.Wed, 15:00-16:00, 25.09-18.12.2019, 1.09 • 6.Wed, 16:00-17:00, 25.09-18.12.2019, 1.09 • 7. Thu, 9:00-10:00, 26.09-19.12.2019, 1.09 • 8. Fri, 9:00-10:00, 27.09-20.12.2019, 4.1
Size scales Visible light 0.4 - 0.8 mm Basel DNA 2.5 nm The sun 1.4 Gm H atom 50 pm 1.2 Mm Proton 1.75 fm Average man 1.75 m Matterhorn 1.0 km Lecce BIG small Red blood cell 10 mm 109 m 106 m 103 m 100 m 10-3 m 10-6 m 10-9 m 10-12 m 10-15 m Gm Mm km m mm m nm pm fm Dog flea 2 mm
Nanomechanics (Macro)mechanics 109 m 106 m 103 m 100 m 10-3 m 10-6 m 10-9 m 10-12 m 10-15 m Gm Mm km m mm m nm pm fm
How is nanomechanics different than (macro)mechanics? • Thermal fluctuations significantly affect the motion of small bodies • Quantum mechanical fluctuations affect the motion of even smaller bodies
Brownian motion Fat droplets suspended in milk through a 40x objective. The droplets are 0.5 - 3.0 mm in size.
Thermal energy Particle mass Boltzmann constant Mean square velocity Temperature
Brownian motion Mean square displacement (a measure of the size of the fluctuations) Elapsed time Particle radius Viscosity of medium
Cantilever F x Spring constant
Cantilever F x Mean square displacement
Introduction to Nanomechanics 1st mode
(Macro)mechanics L = 2 m w = 100 mm t = 50 mm ESS = 200 GPa xth = 0.2 pm for T = 300 K k = 78 kN/m
Nanomechanics L = 120 mm w = 3 mm t = 100 nm ESi = 169 GPa xth = 8 nm for T = 300 K k = 73 mN/m
Quantum fluctuations Zero point fluctuations Planck constant Resonant frequency Mass
(Macro)mechanics l = 2 m w = 100 mm t = 50 mm ESS = 200 Gpa r = 7.85 g/cm3 xZPF = 0.2 am xZPF = 0.2 x 10-18 m k = 78 kN/m m = 20 kg
Nanomechanics L = 120 mm w = 3 mm t = 100 nm ESi = 169 Gpa r = 2.3 g/cm3 xZPF = 0.2 pm xZPF = 0.2 x 10-12 m k = 73 mN/m m = 20 pg
Carbon nanotube m = 10-21 kg w = 2p x 500 MHz xZPF = 4 pm xZPF = 4 x 10-12 m
Quantum fluctuations of a drum Lehnert, 2011
Why study nanomechanics? • Link between classical mechanics and statistical mechanics • Link between classical mechanics and quantum mechanics • Smaller sensors are more sensitive
What is nanomechanics good for? • Smaller sensors are more sensitive! • Measurement of displacement • Measurement of mass • Measurement of force • Measurement of charge • Measurement of magnetic moment
Weighing a single atom Zettl, 2008
21.10.2016 2 µm
Quantum effects Quantum of Thermal Conductance Casimir Force Measurement Decca, 2003 Schwab et al., 2000 Quantum controlof mechanical motion Rossi, 2018