220 likes | 536 Views
ORGANIC REACTION MECHANISMS. AS. A2. Addition – Elimination. Bond fission. Electrophilic substitution. Free radical substitution. Nitration. Eletrophilic addition. Bromination. Bromination of alkene. Friedel-Crafts. Hydration of alkene. Acylation. Addition polymerisation.
E N D
ORGANIC REACTION MECHANISMS AS A2 Addition – Elimination Bond fission Electrophilic substitution Free radical substitution Nitration Eletrophilic addition Bromination Bromination of alkene Friedel-Crafts Hydration of alkene Acylation Addition polymerisation Nucleophilic addition Elimination Formation of polypeptides Nucleophilicsubstitution Formation of polyamides Dehydration Formation of polyesters Esterification Alkaline hydrolysis
BOND FISSION Homolyticfission Br Br Br + - Br Br Br Br Br2 2 Br. Heterolytic fission Br2 Br +. + Br - Curly arrow (Breaking of the bond) HOMOLYTIC FISSION One electron moving A pair of electrons moving 2 x Free radicals (= an unpaired electron) Free radical substitution Reaction of ALKANES = HETEROLYTIC FISSION + Electrophile Nucleophile (= electron pair acceptor) (= electron pair donor) Electrophilic addition Reaction of ALKENES =
FREE RADICAL SUBSTITUTION MECHANISM Br Br Br Br Br Br Br2 2 Br 2 Br 2 Br 2 Br H H H H CH4 + Br CH3+ HBr H H H C C H H H H C Br Br H H H C C C H H H Br Br Br C H H C H H H H H H H H H H H H H H H CH3+ Br2 CH3Br + Br H H Br Br Br Br Br Br H H Br Br C C H Br C H H H H C C C C H C H H H H H H H H H 2 Br Br2 H Br Br Br Br Br Br H3C + Br CH3Br 2 CH3 H3C-CH3 Initiation Initiation Propagation Propagation + + + + Major organic product + Termination Termination Least favourable + Possible + Most favourable
BROMINATION OF ALKENE Br Br H3C C H3C C H3C H Br C + Br H H3C C H3C Br C H H C H3C H H - + Nucleophile :Br - 2-methylpropene Carbocation (Electrophile) 1,2-dibromo-2-methylpropane
H3C H3C C H3C H3C H C H C H C H O H H H3C H3C H3C H3C H H C O C C + C H H H H O+ H H H H HYDRATION OF ALKENE MECHANISM 2-methylpropene 2-methylpropan-1-ol H+ H+
Cl H Cl H Cl H Cl H C = C C C C C C C = = = H H H H H H H H Cl H Cl H Cl H Cl H C C C C C C C C or H H H H H H H H n ADDITION POLYMERISATION MECHANISM Monomer + Chloroethene + Trigonal planar 120o Polychloroethene Repeat unit Repeat unit = Any 2 consecutive C along the C chain Dimer Trimer
R - X + :Nu- R - Nu + :X- H H δ+ δ- C C Cl HO H H H H NUCLEOPHILICSUBSTITUTION MECHANISM δ+δ- + + Cl - OH - ELECTRON CLOUD from the nucleophile SHIFTS toward +C atom, and a DATIVE COVALENT BOND starts to form. As this happens, the C – X bond is WEAKENS and eventually BREAKS HETEROLITICALLY.
ELIMINATION MECHANISM OH - Cl H Cl H H - C C C C H H H H H H H H Cl - C C H H H2O + +
H H O H + H O H C C C C H H H H H H H H H O H H H C C H H H+ DEHYDRATION H+ + +
HO HO H + + C C O H O R R HO H R O + C R O O H O + H C O H R R R H H O C O + HO H R + C O O R R R Nucleophilic attack Protonation + ESTERIFICATION MECHANISM Proton transfer + Water elimination Proton elimination + H2O
H H δ+ δ- C Cl C Cl- O O- HO OH H δ+ δ- C O OH- Cl ADDITION-ELIMINATION MECHANISM (NUCLEOPHILICSUBSTITUTION) δ+δ- δ+ δ- Nucleophilic addition δ+ δ- + Nucleophilic substitution Elimination +
R R C OH- C O HO O- Na+ R O R O R C O R C O R OH R O- Na+ H O Na+ O- ALKALINE HYDROLYSISMECHANISM Nucleophilic attack Break down of the tetrahedral intermediate Proton transfer
HNO3 + H2SO4 H2NO3+ + HSO4- H NO2 H2NO3+ H2 O + NO2+ HNO3 + H2SO4 H2O + NO2+ + HSO4- NO2 H + NO2 H+ + HSO4-H2SO4 + H+ + NITRATION Formation of the electrophile: NO2+ nitronium ion Electrophilic substitution: HSO4- Regeneration of the catalyst: H2SO4 cat. C6H6 + HNO3 C6H5NO2 + H2O Overall equation: 50oC
Br2 + FeBr3 Br+ + FeBr4- H Br Br H + Br + H+ + H+ + FeBr4- FeBr3 +HBr BROMINATION Formation of the electrophile: Br+ Electrophilic substitution: FeBr4- Regeneration of the catalyst: FeCl3 cat. C6H6 + Br2 C6H5Br + HBr Overall equation:
CH3Cl + FeCl3 CH3+ + FeCl4- H CH3 CH3 H + CH3 + H+ + H+ + FeCl4- FeCl3 + HCl FRIEDEL-CRAFT MECHANISM Formation of the electrophile: CH3+ Electrophilic substitution: FeCl4- Regeneration of the catalyst: FeCl3 cat. C6H6 + CH3Cl C6H5CH3 + HCl Overall equation:
CH3COCl + FeCl3 CH3CO+ + FeCl4- H COCH3 COCH3 H + COCH3 + + H+ H+ + FeCl4- FeCl3 + HCl ACYLATION MECHANISM Formation of the electrophile: CH3CO+ Electrophilic substitution: FeCl4- Regeneration of the catalyst: Overall equation: FeCl3 cat. C6H6 + CH3COCl C6H5COCH3 + HCl
H CΞN H C O H H O - C NΞC H - CΞN H NΞC C O H H NUCLEOPHILIC ADDITION MECHANISM bond weakens and breaks heterolytically bond weakens and breaks heterolytically δ+δ- + NΞC- δ+ δ- Dative covalent bond formation Dative covalent bond formation oxoanion + 2-hydroxynitrile This reaction is useful because the chain is extended by 1 carbon.
H H O H H O H H O N C C N C C N C C H R OH H R OH` H R OH H H O H O H O N C C N C C N C C H R H R H R OH H O N C C H R n FORMATION OF POLYPEPTIDES + + Monomer 2-amino acid Peptide link (amide) Peptide link (amide) + 2 H2O Trimer Repeat unit (aminoacid residue)
H H H H O O O O (CH2)n N (CH2)n N N N C C C (CH2)n C (CH2)n H H OH OH H H OH OH H O O O O (CH2)n N (CH2)n N N N C C C (CH2)n C (CH2)n H H H H OH Peptide link (amide) Peptide link (amide) O C Repeat unit O O OH (CH2)n N N C C (CH2)n H H DIBASIC ACID and DIAMINE to form POLYAMIDES + + + Repeat unit Repeat unit +3 H2O Peptide link (amide) 2 monomers
O O O O O O HO C C OH HO C C OH H H O O (CH2)n (CH2)n O O (CH2)n H H (CH2)n HO C C (CH2)n O O O (CH2)n (CH2)n (CH2)n O O O H H H O O O O C C C C (CH2)n (CH2)n Repeat unit (2 monomers) Repeat unit (2 monomers) REACTION OF DIBASIC ACID and DIOL to form POLYESTERS + + + + 3 H2O Ester link Ester link Ester link