1 / 6

ECE 665 Spring 2004 Computer Algorithms with Applications to VLSI CAD

ECE 665 Spring 2004 Computer Algorithms with Applications to VLSI CAD. Linear Programming - Duality Max-Flow/Min-cut. Primal Problem. x3. x7. x1. x4. x0. x0. max x0. st. x2. x5. x8. -x1-x2+x0 = 0. x6. x1-x3-x4 = 0. Max flow. x2-x5-x6 = 0. x3+x5-x7 = 0. x4+x6-x8 = 0.

sheri
Download Presentation

ECE 665 Spring 2004 Computer Algorithms with Applications to VLSI CAD

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ECE 665Spring 2004Computer AlgorithmswithApplications to VLSI CAD Linear Programming - Duality Max-Flow/Min-cut

  2. Primal Problem x3 x7 x1 x4 x0 x0 max x0 st x2 x5 x8 -x1-x2+x0 = 0 x6 x1-x3-x4 = 0 Max flow x2-x5-x6 = 0 x3+x5-x7 = 0 x4+x6-x8 = 0 x7+x8-x0 = 0 Edge capacities Flow variables x1 <= 12 1 2 x2 <= 9 x3 <= 10 x4 <= 3 10 x5 <= 4 7 12 4 x6 <= 10 3 4 6 5 x7 <= 7 3 x8 <= 13 9 13 end 10 Example3: Max-Flow Min-Cut ECE 665 - Max-Flow/Min-Cut Duality

  3. Primal Problem - Solution X3=7 X1=10 X7=7 X4=3 X0=19 X0=19 X2=9 X8=12 X5=0 LP OPTIMUM FOUND AT STEP 3 min cut X6=9 OBJECTIVE FUNCTION VALUE 1) 19.000000 VARIABLE VALUE REDUCED COST 1 2 X0 19.000000 0.000000 X1 10.000000 0.000000 X2 9.000000 0.000000 10 7 X3 7.000000 0.000000 12 4 3 5 6 4 X4 3.000000 0.000000 3 X5 0.000000 1.000000 9 13 X6 9.000000 0.000000 10 X7 7.000000 0.000000 X8 12.000000 0.000000 Example3: Max-Flow Min-Cut (2) Saturated edges: x2=9 x4=3 x7=7 Max flow= 19 = min cut of forward saturated eges ECE 665 - Max-Flow/Min-Cut Duality

  4. Dual Problem - formulation x3 x7 x1 x4 x0 x0 max x0 st x2 x5 x8 z1 -x1-x2+x0 = 0 x6 x1-x3-x4 = 0 Node constraints: dual variables z x2-x5-x6 = 0 x3+x5-x7 = 0 x4+x6-x8 = 0 z6 Dual objective vector: [z1,…, z6, w1,…,w8] x7+x8-x0 = 0 w1 x1 <= 12 1 2 Dual objective cost: [ 0, … , 0, c1, …, c8] x2 <= 9 x3 <= 10 Edge constraints: dual variables w x4 <= 3 10 Edge capacities (12,9,10,3,4,10,7,13) x5 <= 4 7 12 4 x6 <= 10 3 4 6 5 x7 <= 7 3 w8 x8 <= 13 9 13 end 10 Example3: Max-Flow Min-Cut (3) Convert primal problem: Dual obj function: Fdual = 0 z1+…+0 z2 + 12 w12 +… + 13 w8 ECE 665 - Max-Flow/Min-Cut Duality

  5. Dual Problem st z1-z6 >= 1 -z1+z2+w1 >= 0 z2 z4 w3 -z1+z3+w2 >= 0 w7 w1 -z2+z4+w3 >= 0 z1 z6 -z2+z5+w4 >= 0 w4 -z3+z4+w5 >= 0 w5 -z3+z5+w6 >= 0 1 2 w2 w8 -z4+z6+w7 >= 0 w6 z5 -z5+z6+w8 >= 0 z3 z= node variables end w = edge variables 3 4 6 5 Example3: Max-Flow Min-Cut (4) min 12w1 +9w2 +10w3 +3w4 +4w5 +10w6 +7w7 +13w8 ECE 665 - Max-Flow/Min-Cut Duality

  6. Dual Problem - solution z4=1 z2=1 min cut w3=0 w1=0 w7=1 z1=1 z6=0 w4=1 w5=0 OBJECTIVE FUNCTION VALUE S T w2=1 1) 19.000000 w8=0 z3=0 w6=0 z5=0 VARIABLE VALUE REDUCED COST W1 0.000000 2.000000 W2 1.000000 0.000000 1 2 W3 0.000000 3.000000 W4 1.000000 0.000000 W5 0.000000 4.000000 zi = 1 if nodei is in set S 0 if it is in set T W6 0.000000 1.000000 W7 1.000000 0.000000 W8 0.000000 1.000000 3 4 5 6 Z1 1.000000 0.000000 Z6 0.000000 0.000000 wi = 1 if edge iis in the min-cut 0 otherwise Z2 1.000000 0.000000 Z3 0.000000 0.000000 Z4 1.000000 0.000000 Z5 0.000000 0.000000 Example3: Max-Flow Min-Cut (5) LP OPTIMUM FOUND AT STEP 9 Interpretation of dual variables ECE 665 - Max-Flow/Min-Cut Duality

More Related