350 likes | 545 Views
SENZORY PRO MĚŘENÍ DEFORMACE. Metody pro m ěření deformace Mechanické Elektrické piezoelektrické a piezoresistivní senzory senzory s povrchovou akustickou vlnou induktivní, magnetické a kapacitní senzory Optické senzory s vláknovými vlnovody fotoelastické senzory
E N D
SENZORY PRO MĚŘENÍ DEFORMACE Metody pro měření deformace • Mechanické • Elektrické • piezoelektrické a piezoresistivní senzory • senzory s povrchovou akustickou vlnou • induktivní, magnetické a kapacitní senzory • Optické • senzory s vláknovými vlnovody • fotoelastické senzory • mřížkové a moiré metody
Mechanické senzory deformace Až do roku 1930 se pro měření deformace používaly přístroje založené pouze na mechanické bázi a zesílení se dosahovalo pomocí takových prvků jako páka, závit, klín, různé převody a jejich kombinací. Proto tyto tenzometry nebyly vhodné pro měření strmých gradientů deformace a dynamická měření. Přesnost měření také ovlivňovaly faktory jako tření, ztrátový zdvih, hmotnost a setrvačnost použitých prvků.
Elektrické senzory deformace • Indukčnostní, magnetické a kapacitní senzory Senzory založené na těchto principech jsou většinou velmi rozměrné, těžké a využívají se jen ve velmi specializovaných aplikacích zejména ve strojírenství. Magnetoanizotropní senzor deformace Kapacitní senzor deformace
Elektrické senzory deformace • Piezo-elektrické senzory Jsou většinou používané pro sledování dynamických vstupů. Tenzometry se přitmelí ke vzorku a výstupní napětí se objeví při namáhání vzorku Piezoelektrický efekt je založen na elastické deformaci a orientaci elektrických dipólů v krystalové struktuře. Základem je nesymetrická struktura krystalu, ve které se neshodují centra elektrického náboje a tak vytvářejí dipóly. Přiložením vnější mechanické síly se deformují dipóly a na povrchu krystalu tak vzniká náboj (přímý piezoelektrický efekt). Naproti tomu, přiložení elektrického pole způsobí deformaci dipólů, a vyniká konstantní intenzita mechanického napětí (inverzní piezoelektrický efekt)
Elektrické senzory deformace • Piezo-elektrické senzory (vlastnosti) • Hystereze • Vliv teploty • Elektrostrikce • Stárnutí Používané materiály – křemen – polymery na bázi polyvinylfuoridu (PVFD) – slinutá PZT keramika (olovo - zirkon - titan) –PLZT keramika (přidíví se lanthan) dává 2-8x větší napětí než PZT keramika.
Elektrické senzory deformace • Piezo-elektrické senzory (vlastnosti) • chovají se elektricky jako kapacitory, mechanicky jako tuhá pružina • systém má dvě přirozené rezonanční frekvence, jedna je daná frekvencí vlastních oscilací pružiny a druhá je daná elektrickou kapacitou převodníku (typ. více než 200MHz). Příklady aplikací piezoelektrických senzorů měřiče deformace, síly, výchylky nebo akcelerometry, jejichž setrvačná hmota působí na piezoelektrický element nevýhoda: nemohou být využity k měření statických sil Piezoelektrický ohybový senzor
Elektrické senzory deformace • Senzory s povrchovou akustickou vlnou • Základním principem je závislost mechanické rezonanční frekvence pružného prvku na deformaci vyvolané vnějším působením • Senzory s povrchovými akustickými vlnami – využívají změn parametrů vlnění šířícího se z hřebenové struktury vysílače do místa přijímače SAW senzor deformace
Elektrické senzory deformace • Senzory s povrchovou akustickou vlnou Zapojením senzoru SAW do zpětné vazby zesilovače se ziskem A a fázovým posuvem vznikne při splnění podmínky oscilací generátor harmonického napětí s kmitočtem Piezo-elektrické materiály pro substráty SAW senzorů - nejpoužívanější je křemen SiO2 - GaAs, ZnO filmy, PZT keramika - GaPo4 (Gallium Phosphate), vede SAW vlny i při teplotách převyšující 600°C Systémy senzorů SAW se často používají v automobilovém průmyslu, například pro monitorování tlaku v pneumatikách. Senzor je umístěn přímo v pneumatice a je spojen rádiově s řídící jednotkou.
Elektrické senzory deformace • Piezorezistivní senzory–odporové snímače • Změny elektrického odporu jsou dány geometrickými deformacemi nebo změnami v krystalografické orientaci • Deformace je nejčastěji způsobena tlakem nebo tahem v mezích Hookova zákona σ … mechanické napětí ε … poměrné prodloužení E … modul pružnosti
Elektrické senzory deformace • Piezorezistivní senzory Základní funkcí polovodičového tenzometru je stejně jako u kovových tenzometrů, transformace změny jejich rozměrů v určitelném směru na změnu odporu. U odporových tenzometrů je známa důležitá veličina tzv. deformační citlivost K (GF – gauge factor)
Elektrické senzory deformace • Piezorezistivní senzory Je-li R odpor vodiče, V objem, l jeho délka, D průměr, r měrný odpor, platí pro celkový odpor vztah Po úpravě a dosazení Kde C je konstanta závislá na krystalické stavbě odporového materiálu, která se u čistých kovů a slitin pohybuje v mezích –12 (Nikl) až +6 (Platina) μ je Poissonova konstanta
Elektrické senzory deformace • Piezorezistivní senzory pak tento vztah popisuje čistě geometrický důsledek deformace a nazývá se Tenzometrický jev m- pružně odporový součinitel, popisuje fyzikální důsledek a nazývá se Piezorezistivním jev
Elektrické senzory deformace • Piezorezistivní senzory pružně odporový součinitel - m Kde pjsou piezoresistivní koeficienty Pak platí
Elektrické senzory deformace • Piezorezistivní senzory - rozdělení
Elektrické senzory deformace • Piezorezistivní senzory - Kovové tenzometry foliové Vyrábějí se z kovových slitin s koeficientem K blízkém 2 a vybírají se dále s ohledem na minimální teplotní součinitel odporu
Elektrické senzory deformace • Piezorezistivní senzory - Kovové tenzometry naprašované Naprašováním ve vakuu se vytvoří nejdříve dielektrická vrstva na nosné destičce (např. křemík) a pak aktivní vrstva. Používají se stejné materiály jako u foliových tenzometrů (Cermet, Nichrom…)
Elektrické senzory deformace • Piezorezistivní senzory - struktury Layout a) samostatného, b) biaxiálního, c) tříprvkového tenzometru
Elektrické senzory deformace • Piezorezistivní senzory - Monokrystalické polovodičové tenzometry Koeficient deformační citlivosti závisí na typu vodivosti. Kladné hodnoty má pro P typ polovodiče, záporné pro N typ vodivosti
Elektrické senzory deformace • Piezorezistivní senzory - Monokrystalické polovodičové tenzometry Polovodičové tenzometry s různým umístěním kontaktů Difúzní technologií (nebo implantací) vyrobený polovodičový tenzometr
Elektrické senzory deformace • Piezorezistivní senzory - Tenzometr s dlouhým vláknem
Elektrické senzory deformace • Piezorezistivní senzory – Tenzometry pro vyšší teploty Tenzometr v technologii SOI Tenzometr vyrobený na bázi karbidu křemíku
Elektrické senzory deformace • Piezorezistivní senzory – způsoby montáže
Elektrické senzory deformace • Piezorezistivní senzory – vyhodnocovaní informace • Nejčastěji Wheatstoneův můstek
Elektrické senzory deformace • Piezorezistivní senzory - vyhodnocovaní informace • Třívodičové zapojení
Elektrické senzory deformace • Piezorezistivní senzory - vyhodnocovaní informace • Teplotní kompenzace
Elektrické senzory deformace • Piezorezistivní senzory - vyhodnocovaní informace • Polomůstkové zapojení
Elektrické senzory deformace • Piezorezistivní senzory - vyhodnocovaní informace • Celomůstkové zapojení
Optické senzory deformace • Optické vláknové senzory deformace Mechanická deformace optického vlákna má za následek změnu podmínek šíření světelného svazku, protože se mění geometrie jádro-plášť a také index lomu vlivem účinku mechanického namáhání. Také záleží na tom, zda deformace působí kolmo nebo podél osy vlákna. Optické vláknové senzory deformace a) podélný, b) příčný
Optické senzory deformace • Optické vláknové senzory deformace – cont. Citlivost lze podstatně zvýšit použitím jednovidových vláken a interferometrického uspořádání měřícího obvodu Senzor využívá Braggovu mřížku s periodou g která odráží selektivně na vlnové délce kde N je efektivní index lomu
Optické senzory deformace • Optické vláknové senzory deformace – cont. Změny útlumu vlákna při mikroohybech se využívají zejména pro výrobu senzorů tlaku nebo síly. Optické vláknové senzory jsou vhodné pro aplikaci při vyšších teplotách (až 400 °C) a také v situacích kdy senzor nesmí obsahovat kovové části.
Optické senzory deformace • Mřížkové techniky Tyto senzory mají na sobě umístěny referenční značky, jejichž vzdálenost se měří v klidu a potom při namáhání. Deformace se pak vypočítá z poměru změny délky a původní délky mezi značkami. Referenční značky jsou uspořádány do souvislého mřížkového vzoru (obdélníkový, polární). Mezi jednotlivými body pak můžeme sledovat gradient mechanického namáhání Mřížka se vyrábí: • nakreslením nebo rytím • fotografickým tištěním • přitmelením předpřipravené mřížky na povrch měřeného objektu • leptáním
Optické senzory deformace • Metoda Moiré Pro měření deformace je potřeba dvou vzorků s mřížkami, jeden testovací a druhý referenční. Rozptylový „Moire“ efekt je útvar střídajících se tmavých a světlých pruhů, který vznikne při porovnání deformované a referenční mřížky, když se položí na sebe a jedna se buď otáčí nebo posouvá • Fotoelastické senzory u některých materiálů vzniká dvojlom světelného svazku při působení mechanického namáhání. Rychlost světla se pak mění v závislosti na směru šíření. Aplikace tohoto jevu spočívá v prosvětlování transparentního modelu polarizovaným světlem • Používané materiály: různé typy skel, celuloid, želatina, guma, celulózové nitráty, vinyly, fenolové formaldehydy, polyester, epoxid, uretan